Skip to main content

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 1129 Accesses

Abstract

In this chapter we suggest that one natural context for equations of mixed elliptic–hyperbolic type is the apparently spontaneous focusing of energy. In some cases this process depends on how a body is embedded in a higher-dimensional space. A brief historical review of the isometric embedding problem is included; remarks on the Hard Implicit Function Theorem, used in much of the associated literature, are given. We review the related matter of the reduction of the Darboux equation to a quasilinear system; the technical discussions are based mainly on work by Han, Hong and Lin and by Chen, Slemrod, and Wang. The focusing of elastic energy provides a potential area of physical application for the mathematics of isometric embedding. The well-studied case of crumpling flat sheets is a special case of a larger and still emerging theory for indentations of thin shells. The concentration of energy that characterizes the failure of elastic structures is mathematically analogous to the focusing of electromagnetic energy at a caustic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexandroff, A.D.: Existence of a polyhedron and of a convex surface with given metric. Dokl. Akad. Nauk SSSR (N.S.) 50, 103–106 (1941); Mat. Sbornic (N.S.) 11(53), 15–65 (1942)

    Google Scholar 

  2. Apèry, F.: Models of the Real Projective Plane. Vieweg, Braunschweig (1987)

    Book  MATH  Google Scholar 

  3. Arnol’d, V.I.: Catastrophe Theory. Springer, Berlin (1986)

    Book  Google Scholar 

  4. Asano, K.: A note on the Nash-Moser implicit function theorem. Proc. Jpn. Acad. Ser. A 64, 139–142 (1988)

    Google Scholar 

  5. Aubin, T.: Nonlinear Analysis on Manifolds. Monge-Ampère Equations. Springer, New York (1982)

    Book  Google Scholar 

  6. Barcel‘o, C., Liberati, S., Visser, M.: Analogue gravity. Living Rev. Relativ. 8, 12 (2005)

    Google Scholar 

  7. Berry, M.V.: Much Ado About Nothing: optical dislocation lines (phase singularities, zeros, vortices...). In: Soskin, M.S. (ed.) Singular Optics, Proc. SPIE, vol. 3487. Optical Society of America, Washington (1998)

    Google Scholar 

  8. Bouwe van den Berg, J., Hulshof, J., King, J.R.: Formal asymptotics of bubbling in the harmonic map heat flow. SIAM J. Appl. Math. 63, 1682–1717 (2003)

    Google Scholar 

  9. Brieskorn, E., Knörrer, H.: Plane Algebraic Curves. Birkhäuser, Boston (1981)

    Google Scholar 

  10. Bruce, J.W., Giblin, P.J.: Curves and Singularities. Cambridge (1992)

    Google Scholar 

  11. Bryant, R.L., Griffiths, P.A., Yang, D.: Characteristics and existence of isometric embeddings. Duke Math. J. 50, 893–994 (1983)

    Google Scholar 

  12. Burstin, C.: Ein Beitrag zum Problem der Einbettung der Riemannschen Räume in euklidischen Täumen. Ann. Soc. Polon. Math. 6, 1–7 (1927)

    Google Scholar 

  13. Cartan, É.: Sur la possibilité de plonger en espace riemannien donné dans un espace euclidien. Ann. Soc. Polon. Math. 6, 1–7 (1927)

    MATH  Google Scholar 

  14. Castro, A., Neuberger, J.W.: An inverse function theorem via continuous Newton’s method. Nonlinear Anal. 47, 3223–3229 (2001)

    Article  MathSciNet  Google Scholar 

  15. Chang, J.-E., Xiao, L.: The Weyl problem with nonnegative Gauss curvature in hyperbolic space. arXiv:1209.4665v2 [math.DG] 24 Sep 2012

  16. Chen, G.-Q., Slemrod, M., Wang, D.: Vanishing viscosity method for transonic flow. Arch. Ration. Mech. Anal. 189, 159–188 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chen, G.-Q., Slemrod, M., Wang, D.: Conservation Laws: Transonic Flow and Differential Geometry. Hyperbolic Problems: Theory, Numerics and Applications, Proc. Sympos. Appl. Math., vol. 67, Part 1, pp. 217–226. American Mathematical Society, Providence (2009)

    Google Scholar 

  18. Chen, G.-Q., Slemrod, M., Wang, D.: Isometric immersions and compensated compactness. Commun. Math. Phys. 294, 411–437 (2010)

    Article  MathSciNet  Google Scholar 

  19. Chen, G.-Q., Slemrod, M., Wang, D.: Weak continuity of the Gauss-Codazzi-Ricci system for isometric embedding. Proc. Am. Math. Soc. 138, 1843–1852 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chen, G.-Q., Slemrod, M., Wang, D.: A fluid dynamic formulation of the isometric embedding problem in differential geometry. Quart. Appl. Math. 68, 73–80 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Chen, G.-Q.; Slemrod, M.; Wang, D.: Transonic flows and isometric embeddings. In: Bresson et al. (eds.) Nonlinear Conservation Laws and Applications. IMA vol. Math. Appl., 153, pp. 257–266. Springer, New York (2011)

    Google Scholar 

  22. Chen, G.-Q., Clelland, J., Slemrod, M., Wang, D., Yang, D.: Isometric embeding via strongly symmetric positive systems, preprint (2015)

    Google Scholar 

  23. Chen, S.: Generalized Tricomi problem for a quasilinear mixed type equation. Chin. Ann. Math. 30B, 527–538 (2009)

    Article  Google Scholar 

  24. De Micheli, E., Vianoz, G.A.: The evanescent waves in geometrical optics and the mixed hyperbolic-elliptic type systems. Appl. Anal. 85, 181–204 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. De Micheli, E., Vianoz, G.A.: Geometrical theory of diffracted rays, orbiting and complex rays. Russ. J. Math. Phys. 13, 253–277 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. DiDonna, B.A., Witten, T.A., Venkataramani, S.C., Kramer, E.M.: Singularities, structures, and scaling in deformed \(m\)-dimensional elastic manifolds. Phys. Rev. E 65, 016603 (2001)

    Article  MathSciNet  Google Scholar 

  27. Friedrichs, K.O.: Symmetric positive linear differential equations. Commun. Pure Appl. Math. 11, 333–418 (1958)

    Article  MathSciNet  Google Scholar 

  28. Gellerstedt, S.: Sur un problème aux limites our une équation linéaire aux dérivées partielles du second ordre de type mixte. Dissertation, Uppsala University, Upsala (1935)

    Google Scholar 

  29. Gilmore, R.: Catastrophe Theory for Scientitsts and Engineers. Dover, New York (1993)

    Google Scholar 

  30. Goodman, J.B., Yang, D.: Local solvability of nonlinear partial differential equations of real principal type, unpublished preprint, 1988. http://www.deaneyang.com/papers/goodman-yang.pdf. Accessed 2 July 2013

  31. Greene, R.E., Jacobowitz, H.: Analytic isometric embeddings. Ann. Math. 93, 189–204 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  32. Gromov, M.L.: Partial Differential Relations. Springer, New York (1986)

    Book  MATH  Google Scholar 

  33. Gu, C.: Boundary value problems for quasilinear symmetric systems and their applications in mixed equations [in Chinese]. Acta Math. Sin. 21, 119–129 (1978)

    MATH  Google Scholar 

  34. Guan, P., Li, Y.: The Weyl problem with nonnegative Gauss curvature. J. Differ. Geom. 39, 331–342 (1994)

    MATH  MathSciNet  Google Scholar 

  35. Guan, B., Spruck, J.: Convex Hypersurfaces of Constant Curvature in Hyperbolic Space. Surveys in Geometric Analysis and Relativity, pp. 241–257. International Press, Somerville (2011)

    Google Scholar 

  36. Guan, B., Spruck, J., Szapiel, M.: Hypersurfaces of constant curvature in hyperbolic space I. J. Geom. Anal. 19, 772–795 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Guckenheimer, J.: Catastrophes and partial differential equations. Ann. Inst. Fourier (Grenoble) 23, 31–59 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  38. Günter, M.: On the perturbation problem associated to isometric embeddings of Riemannian manifolds. Ann. Global Anal. Geom. 7, 69–77 (1989)

    Article  MathSciNet  Google Scholar 

  39. Günter, M.: Isometric embeddings of Riemannian manifolds. Proc. Int. Congr. Math., Kyoto (1990)

    Google Scholar 

  40. Hamersley, J.M., Handscomb, D.C.: Monte Carlo Methods. Methuen, London (1964)

    Book  Google Scholar 

  41. Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. (N.S.) Amer. Math. Soc. 7, 65–222 (1982)

    Google Scholar 

  42. Han, Q.: Local isometric embedding of surfaces with Gauss curvature changing sign stably across a curve. Calc. Var. 25, 79–103 (2005)

    Article  Google Scholar 

  43. Han, Q., Hong, J.-X.: Isometric Embedding of Riemannian Manifolds in Euclidean Spaces. Mathematical Surveys and Monographs, vol. 130. American Mathematical Society, Providence, Rhode Island (2006)

    Google Scholar 

  44. Han, Q., Khuri, M.: On the local isometric embedding in \(\mathbf{R}^3\) of surfaces with Gaussian curvature of mixed sign. Comm. Anal. Geom. 18, 649–704 (2010)

    Google Scholar 

  45. Han, Q., Khuri, M.: Smooth solutions to a class of mixed type Monge-Ampère equations. Calc. Var. Partial Differ. Equ. 47, 825–867 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  46. Han, Q., Lin, F.: On the isometric embedding of the torus in \(\mathbf{R}^3.\) Meth. Appl. Anal. 15, 197–204 (2008)

    MATH  MathSciNet  Google Scholar 

  47. Hardt, R., Kinderlehrer, D., Lin, F.-H.: Existence and regularity of static liquid crystal configurations. Commun. Math. Phys. 105, 547–570 (1985)

    Article  MathSciNet  Google Scholar 

  48. Hartman, P.: On the isometric immersions in Euclidean space of manifolds with nonegative sectional curvature. Trans. Am. Math. Soc. 147, 529–540 (1970)

    Article  Google Scholar 

  49. Hartman, P., Wintner, A.: On the embedding problem in differential geometry. Am. J. Math. 72, 553–564 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  50. Hartman, P., Wintner, A.: On hyperbolic partial differential equations. Am. J. Math. 74, 834–864 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  51. Hilbert, D.: Über flächen von constanter Gausscher Krümmung. Trans. Am. Math. Soc. 2, 87–99 (1901)

    MATH  MathSciNet  Google Scholar 

  52. Hong, J.X.: Realization in \(\mathbf{R}^3\) of complete Riemannian manifolds with negative curvature. Commun. Anal. Geom. 1, 487–514 (1993)

    Google Scholar 

  53. Hörmander, L.: The boundary problems of physical geodesy. Arch. Ration. Mech. Anal. 62, 1–52 (1976)

    Article  Google Scholar 

  54. Hörmander, L.: Correction to: “The boundary problems of physical geodesy” (Arch. Rational Mech. Anal. 62 (1976), no. 1, 1–52). Arch. Ration. Mech. Anal. 65, 395 (1977)

    Google Scholar 

  55. Hörmander, L.: The Analysis of Linear Partial Differential Operators IV, Grundlehren Math. Wiss., vol. 275. Springer, Berlin (1985)

    Google Scholar 

  56. Iaia, J.A.: Isometric embeddings of surfaces with nonnegative curvature in \(R^3.\) Duke. Math. J. 67, 423–459 (1992)

    Google Scholar 

  57. Janet, M.: Sur la possibilité de plonger en espace riemannien donné dans un espace euclidien. Ann. Soc. Polon. Math. 5, 38–43 (1926)

    Google Scholar 

  58. Kallel-Jallouli, S.: Existence of \(C^\infty \) local solutions of the complex Monge-Ampère equation. Proc. Am. Math. Soc. 131, 1103–1108 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  59. Khuri, M.A.: The local isometric embedding in \(\mathbf{R}^3\) of two-dimensional Riemannian manifolds with Gaussian curvature changing sign to finite order on a curve. J. Differ. Geom. 76, 249–291 (2007)

    MathSciNet  Google Scholar 

  60. Khuri, M.A.: On the local solvability of Darboux’s equation. Discr. Cont. Dyn. Syst. Supp. 541–456 (2009)

    Google Scholar 

  61. Kramer, E.M.: The von Karman equations, the stress function, and elastic ridges in higher dimensions. J. Math. Phys. 38, 830–846 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  62. Kramer, E.M., Witten, T.A.: Stress condensation in crushed elastic manifolds. Phys. Rev. Lett. 78, 1303–1306 (1997)

    Article  Google Scholar 

  63. Kuiper, N.H.: On \(C^1\)-isometric imbeddings I. Nederl. Akad. Wetensch. Proc. Ser. A. 58, 545–556 (1955)

    Google Scholar 

  64. Lax, P.D., Phillips, R.S.: Local boundary conditions for dissipative symmetric linear differential operators. Commun. Pure Appl. Math. 13, 427–455 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  65. Levi, E.: Sur l’application des équations intégrales aux problème de Riemann. Nachr. Köigl. Ges. Wiss. Góttingen Math.-Phys. Kl. 249–252 (1908)

    Google Scholar 

  66. Lewy, H.: On the existence of a closed, convex surface realizing a given Riemannian metric. Proc. Natl. Acad. Sci. U.S.A. 24, 104–106 (1938)

    Google Scholar 

  67. Lin, C.S.: The local isometric embedding in \(R^3\) of two-dimensional Riemannian manifolds with Gaussian curvature changing sign cleanly. Commun. Pure Appl. Math. 39, 867–887 (1986)

    Article  MATH  Google Scholar 

  68. Ludwig, D.: Uniform asymptotic expansions at a caustic. Commun. Pure Appl. Math. 19, 215–250 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  69. Minkowski, H.: Volumen und Oberfläche. Math. Ann. 57, 447–495 (1903)

    Google Scholar 

  70. Morawetz, C.S.: On steady transonic flow by compensated compactness. Methods Appl. Anal. 2, 257–268 (1995)

    MATH  MathSciNet  Google Scholar 

  71. Moscatelli, V.B., Simões, M.A.: Generalized Nash-Moser smoothing operators and the structure of Fréchet spaces. Studia Math. 87, 121–132 (1987)

    MATH  MathSciNet  Google Scholar 

  72. Moser, J.: A new technique for the constrruction of solutions of nonlinear equations. Proc. Natl. Acad. Sci. U.S.A. 47, 1824–1831 (1961)

    Google Scholar 

  73. Nadirashvili, N., Yuan, Y.: Improving Pogorelov’s isometric embedding counterexample. Calc. Var. 32, 319–323 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  74. Nakamura, G., Maeda, Y.: Local isometric embeddings of low dimensional Riemannain manifolds into Euclidean spaces. Trans. Am. Math. Soc. 313, 1–51 (1989)

    MathSciNet  Google Scholar 

  75. Nash, J.: \(C^1\)-isometric imbeddings. Ann. Math. 60, 383–396 (1954)

    Article  MathSciNet  Google Scholar 

  76. Nash, J.: The embedding problem for Riemannian manifolds. Ann. Math. 63, 20–63 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  77. Neuberger, J.W.: A Nash-Moser theorem with near-minimal hypothesis. Int. J. Pure Appl. Math. 4, 269–280 (2003)

    MATH  MathSciNet  Google Scholar 

  78. Nirenberg, L.: The Weyl and Minkowski problems in differential geometry in the large. Commun. Pure Appl. Math. 6, 337–394 (1953)

    Google Scholar 

  79. Nye, J.F.: Natural Focusing and Fine Structure of Light. Institute of Physics, London (1999)

    MATH  Google Scholar 

  80. Otway, T.H.: Nonlinear Hodge maps. J. Math. Phys. 41, 5745–5766 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  81. Otway, T.H.: Maps and fields with compressible density. Rend. Sem. Mat. Univ. Padova 111, 133–159 (2004)

    MATH  MathSciNet  Google Scholar 

  82. Otway, T.H.: The Dirichlet Problem for Elliptic-Hyperbolic Equations of Keldysh Type. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  83. Pogorelov, A.V.: An example of a two-dimensional Riemannian metric not admitting a local realization in \(E_3.\) Sov. Math. Dokl. 12, 729–730 (1971)

    Google Scholar 

  84. Pogorelov, A.V.: Extrinsic Gemetry of Convex Surfaces. Math. Monographs, vol. 35. American Mathematical Society, Providence (1973)

    Google Scholar 

  85. Poole, T.E.: The local isometric embedding problem for 3-dimensional Riemannian manifolds with cleanly vanishing curvature. Commun. Partial Differ. Equ. 35, 1802–1826 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  86. Poston, T., Stewart, I.: Catastrophe Theory and Its Applications. Pittman, London (1978)

    Google Scholar 

  87. Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Bull. Am. Math. Soc. 83, 1033–1036 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  88. Sacks, J., Uhlenbeck, K.: On the existence of minimal immersions of 2-spheres. Ann. Math. 113, 1–24 (1982)

    Article  MathSciNet  Google Scholar 

  89. Saint Raymond, X.: A simple Nash-Moser implicit function theorem. Enseignement Math-matique 35(2), 217–226 (1989)

    Google Scholar 

  90. Sarason, L.: On weak and strong solutions of boundary value problems. Commun. Pure Appl. Math. 15, 237–288 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  91. Schläfli, L.: Nota alla memoria del Sig. Beltrami, Sugli spazii di curvatura constante. Ann. di mat. 2e série 5, 170–193 (1873)

    Google Scholar 

  92. Schwartz, J.: On Nash’s implicit function theorem. Commun. Pure Appl. Math. 13, 509–530 (1960)

    Article  MATH  Google Scholar 

  93. Schwartz, J.T.: Nonlinear Functional Analysis. New York University, New York (1964)

    Google Scholar 

  94. Sedlacek, S.: A direct method for minimizing the Yang-Mills functional. Commun. Math. Phys. 86, 515–528 (1982)

    Article  MathSciNet  Google Scholar 

  95. Tanyi, G.E.: On the critical points of the classical elastic energy functional. Afrika Matematika 1, 35–43 (1978)

    Google Scholar 

  96. Tartar, L.: The General Theory of Homogenization, Lecture Notes of the Unione Matematica Italiana, vol. 7, Chap. 17, pp. 185–194 (2010)

    Google Scholar 

  97. Tricker, R.A.: Bores Breakers, and Wakes. Elsevier, New York (1965)

    Google Scholar 

  98. Tso, K. (Chou, K.-S.): Nonlinear symmetric positive systems. Ann. Inst. Henri Poincaré 9, 339–366 (1992)

    Google Scholar 

  99. Vaziri, A., Mahadevan, L.: Localized and extended deformations of elastic shells. Proc. Natl. Acad. Sci. U.S.A. 105, 7913–7918 (2008)

    Article  Google Scholar 

  100. Venkataramani, S.C.: Lower bounds for the energy in a crumpled elastic sheet—a minimal ridge. Nonlinearity 17, 301–312 (2004)

    Article  MathSciNet  Google Scholar 

  101. Venkataramani, S.C., Witten, T.A., Kramer, E.M., Geroch, R.P.: Limitations on the smooth confinement of an unstretchable manifold. J. Math. Phys. 41, 5107–5128 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  102. Wang, X., Zhu, K.: Isometric embeddings via heat kernel. arXiv:1305.5613v2 [math.DG] 25 Jun 2013

  103. Weingarten, J.: Über die theorie der Aubeinander abwickelbarren Oberflächen. Berlin (1884)

    Google Scholar 

  104. Weyl, H.: Über die Bestimmung einer geschlossenen konvexen Fläche durch irh Linienelement. Vierteljahrsschrift der naturforschenden Gesellschaft, Zürich 61, 40–72 (1916)

    Google Scholar 

  105. Whitney, H.: On singularities of mappings of Euclidean spaces, I. Mapping of a plane onto plane. Ann. Math. 62, 374–410 (1955)

    Google Scholar 

  106. Witten, T.A.: Stress focusing in elastic sheets. Rev. Mod. Phys. 79, 643–675 (2007)

    Article  Google Scholar 

  107. Yang, D.: Guther’s proof of Nash’s isometric embedding theorem. http://www.deaneyang.com/papers/gunther.pdf. Accessed 24 Feb 2013

  108. Yau, S.-T.: Problem Section, Seminar on Differential Geometry, Annals of Mathematics Studies, vol. 102. Princeton University Press, Princeton (1982)

    Google Scholar 

  109. Yau, S.-T.: Open Problems in Geometry, Chern—A Great Geometer on the Twentieth Century. International Press, Hong Kong (1992)

    Google Scholar 

  110. Yau, S.-T.: Review of geometry and analysis. Asian J. Math. 4, 235–278 (2000)

    MATH  MathSciNet  Google Scholar 

  111. Zuily, C.: Existence locale de solutions \(C^\infty \) pour des équations de Monge-Ampère changeant de type. Commun. Partial Differ. Equ. 14, 691–697 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Otway .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Otway, T.H. (2015). Natural Focusing. In: Elliptic–Hyperbolic Partial Differential Equations. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-19761-6_6

Download citation

Publish with us

Policies and ethics