Skip to main content

Overview of Elliptic–Hyperbolic PDE

  • Chapter
  • First Online:
  • 1241 Accesses

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

Abstract

The variety and broad applicability of elliptic–hyperbolic equations are illustrated. Included are brief discussions of: the essentials and history of equation type; a “zoo” of elliptic–hyperbolic equations; systems of elliptic–hyperbolic equations; a quasilinear example having multiple sonic lines, with an application to a recent problem in geometry; the issue of local canonical forms, with particular reference to why one of the two canonical forms has much less regularity than the other.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Acharya, A., Tang, H., Saigal, S. Bassani, J.L.: On boundary conditions and plastic strain-gradient discontinuity in lower-order gradient plasticity. J. Mech. Phys. Solids 52, 1793–1826 (2004)

    Google Scholar 

  2. Adler, S.L., Piran, T.: Flux confinement in the leading logarithm model. Phys. Lett. 113B, 405–410 (1982)

    Article  Google Scholar 

  3. Adler, S.L., Piran, T.: Relaxation methods for gauge field equilibrium equations. Rev. Mod. Phys. 56, 1–40 (1984)

    Article  Google Scholar 

  4. Barros-Neto, J., Gelfand, I.M.: Fundamental solutions for the Tricomi operator. Duke Math. J. 98, 465–483 (1999)

    Article  Google Scholar 

  5. Barros-Neto, J., Gelfand, I.M.: Fundamental solutions for the Tricomi operator II. Duke Math. J. 111, 561–584 (2002)

    Article  Google Scholar 

  6. Barros-Neto, J., Gelfand, I.M.: Fundamental solutions for the Tricomi operator III. Duke Math. J. 128, 119–140 (2005)

    Article  Google Scholar 

  7. Bateman, H.: Notes on a differential equation which occurs in the two-dimensional motion of a compressible fluid and the associated variational problems. Proc. R. Soc. Lond. Ser. A 125, 598–618 (1929)

    Article  Google Scholar 

  8. Bateman, H.: Partial Differential Equations. Dover, New York (1944)

    Google Scholar 

  9. Bialy, M., Mironov, A.E.: From polynomial integrals of Hamiltonian flows to a model of non-linear elasticity. J. Differ. Equ. 255, 3434–3446 (2013)

    Article  Google Scholar 

  10. Bick, J.H., Newell, G.F.: A continuum model for two-dimensional traffic flow. Q. Appl. Math. 18, 191–204 (1960)

    Google Scholar 

  11. Bîlă, N.: Application of symmetry analysis to a PDE arising in the car windshield design. SIAM J. Appl. Math. 65, 113–130 (2004)

    Article  Google Scholar 

  12. Boonkasame, A., Milewski, P.: The stability of large-amplitude shallow interfacial non-Boussinesq flows. Stud. Appl. Math. 128, 40–58 (2011)

    Article  Google Scholar 

  13. Bryant, R.L., Griffiths, P.A., Yang, D.: Characteristics and existence of isometric embeddings. Duke Math. J. 50, 893–994 (1983)

    Article  Google Scholar 

  14. Chen, G.-Q., Slemrod, M., Wang, D.: Weak continuity of the Gauss-Codazzi-Ricci system for isometric embedding. Proc. Am. Math. Soc. 138, 1843–1852 (2010)

    Article  Google Scholar 

  15. Chen, S.-X.: The fundamental solution of the Keldysh type operator. Sci. China Ser. A: Math. 52, 1829–1843 (2009)

    Article  Google Scholar 

  16. Chen, S.: A nonlinear Lavrentiev-Bitsadze mixed type equation. Acta Math. Scientia 31B, 2378–2388 (2011)

    Article  Google Scholar 

  17. Chen, S.-X.: A mixed equation of Tricomi-Keldysh type. J. Hyperbolic Differ. Equ. 9, 545–553 (2012)

    Article  Google Scholar 

  18. Chu, C.K.: Magnetohydrodynamic nozzle flow with three transitions. Phys. Fluids 5, 550–559 (1962)

    Google Scholar 

  19. Cibrario, M.: Sulla riduzione a forma canonica delle equazioni lineari alle derivate parziali di secondo ordine di tipo misto. Rendiconti del R. Insituto Lombardo 65 (1932)

    Google Scholar 

  20. Cibrario, M.: Intorno ad una equazione lineare alle derivate parziali del secondo ordine di tipe misto iperbolico-ellittica. Ann. Sci. Norm. Sup. Pisa, Cl. Sci. Ser. 2 3, Nos. 3, 4, 255–285 (1934)

    Google Scholar 

  21. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 2. Wiley-Interscience, New York (1962)

    Google Scholar 

  22. Diustermaat, J.J., Hörmander, L.: Fourier integral operators II. Acta Math. 128, 183–269 (1972)

    Article  Google Scholar 

  23. Ericksen, J.L.: Equilibrium of bars. J. Elast. 5, 191–201 (1975)

    Article  Google Scholar 

  24. Friedrichs, K.O.: Symmetric positive linear differential equations. Commun. Pure Appl. Math. 11, 333–418 (1958)

    Article  Google Scholar 

  25. Goodman, J.B., Yang, D.: Local solvability of nonlinear partial differential equations of real principal type. Unpublished preprint (1988). http://www.deaneyang.com/papers/goodman-yang.pdf. Accessed 2 July 2013

  26. Gramchev, T.V.: An application of the analytic microlocal analysis to a class of differential operators of mixed type. Math. Nachr. 121, 41–51 (1985)

    Article  Google Scholar 

  27. Groothuizen, R.J.P.: Mixed elliptic-hyperbolic partial differential operators: a case study in Fourier integral operators. In: CWI Tact, vol. 16. Centrum voor Wiskunde en Informatica, Amsterdam (1985)

    Google Scholar 

  28. Grossman, W., Weitzner, H.: A reformulation of lower-hybrid wave propagation and absorption. Phys. Fluids 27, 1699–1703 (1984)

    Article  Google Scholar 

  29. Gu, C.: On partial differential equations of mixed type in \(n\) independent variables. Commun. Pure Appl. Math. 34, 333–345 (1981)

    Article  Google Scholar 

  30. Guazzotto, L., Hameiri, E.: A model for transonic plasma flow. Phys. Plasmas 21, 022512 (2014)

    Article  Google Scholar 

  31. Guillemin, V.W., Kashiwara, M., Kawai, T.: Seminar on Microlocal Analysis. Princeton University Press, Princeton (1979)

    Google Scholar 

  32. Hadamard, J.: Four Lectures on Mathematics, Delivered at Columbia University in 1911. Columbia University Press, New York (1915)

    Google Scholar 

  33. Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations, 1923 edn. Dover, New York (2003)

    Google Scholar 

  34. Han, Q., Hong, J.-X.: Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, Mathematical surveys and monographs, vol. 130. American Mathematical Society, Providence, Rhode Island (2006)

    Google Scholar 

  35. Han, Q., Khuri, M.: On the local isometric embedding in \(\mathbf{R}^3\) of surfaces with Gaussian curvature of mixed sign. Commun. Anal. Geom. 18, 649–704 (2010)

    Google Scholar 

  36. Han, Q., Khuri, M.: Smooth solutions to a class of mixed type Monge-Ampère equations. Calc. Var. Partial Diff. Equ. 47, 825–867 (2013)

    Article  Google Scholar 

  37. Hartle, J.B., Hawking, S.W.: Wave function of the universe. Phys. Rev. D 28, 2960–2975 (1983)

    Article  Google Scholar 

  38. Hersh, R.: How to classify differential polynomials. Am. Math. Mon. 80, 641–654 (1973)

    Article  Google Scholar 

  39. Hörmander, L.: Propagation of singularities and semi-global existence theorems for (pseudo)-differential operators of principal type. Ann. Math. 108, 569–609 (1978)

    Article  Google Scholar 

  40. Hua, L.-K.: Geometrical theory of partial differential equations. In: Chern, S.S., Wen-tsün, W. (eds.) Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, pp. 627–654. Gordon and Breach, New York (1982)

    Google Scholar 

  41. Ji, X.-H., Chen, D.-Q.: Tricomi’s problems of non-homogeneous equation of mixed type in real projective plane. In: Chern, S.S., Wen-tsün, W. (eds.) Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, pp. 1257–1271. Gordon and Breach, New York (1982)

    Google Scholar 

  42. Keldysh, M.V.: On certain classes of elliptic equations with singularity on the boundary of the domain [in Russian]. Dokl. Akad. Nauk SSSR 77, 181–183 (1951)

    Google Scholar 

  43. Keyfitz, B.L.: Change of type in simple models for two-phase flow. Viscous profiles and numerical methods for shock waves (Raleigh. NC, 1990), pp. 84–104. SIAM, Philadelphia (1991)

    Google Scholar 

  44. Khuri, M.: Boundary value problems for mixed type equations and applications. Nonlinear Anal. 74, 6405–6415 (2011)

    Article  Google Scholar 

  45. Klein, C.: Binary black hole spacetimes with helical Killing vector. Phys. Rev. D 70, 124026 (2004)

    Article  Google Scholar 

  46. Kozlov, V.V.: Polynomial integrals of dynamical systems with one-and-a-half degrees of freedom. Math. Notes (English translation of Mat. Zap.) 45, 296–300 (1989)

    Google Scholar 

  47. Kravtsov, YuA: A modification of the geometrical optics method [in Russian]. Radiofizika 7, 664–673 (1964)

    Google Scholar 

  48. Lavrent’ev, M.A., Bitsadze, A.V.: On the problem of equations of mixed type [in Russian]. Doklady Akad. Nauk SSSR (n.s.). 70, 373–376 (1950)

    Google Scholar 

  49. Lazzaro, E., Maroli, C.: Lower hybrid resonance in an inhomogeneous cold and collisionless plasma slab. Nuovo Cim. 16B, 44–54 (1973)

    Article  Google Scholar 

  50. Lifschitz, A., Goedbloed, J.P.: Transonic magnetohydrodynamic flows. J. Plasma Phys. 61–99 (1997)

    Google Scholar 

  51. Ludwig, D.: Uniform asymptotic expansions at a caustic. Commun. Pure Appl. Math. 19, 215–250 (1966)

    Article  Google Scholar 

  52. Lupo, D., Monticelli, D.D., Payne, K.R.: On the Dirichlet problem of mixed type for lower hybrid waves in axisymmetric cold plasmas. Arch. Rat. Mech. Anal. Published online 11 Dec 2014

    Google Scholar 

  53. Magnanini, R., Talenti, G.: On complex-valued solutions to a 2D eikonal equation. Part one: qualitative properties. Contemp. Math. 283, 203–229 (1999)

    Article  Google Scholar 

  54. Magnanini, R., Talenti, G.: Approaching a partial differential equation of mixed elliptic-hyperbolic type. In: Anikonov, Yu.E, Bukhageim, A.L., Kabanikhin, S.I., Romanov, V.G. (eds.) Ill-posed and Inverse Problems, pp. 263–276. VSP, Utrecht (2002)

    Google Scholar 

  55. Magnanini, R., Talenti, G.: On complex-valued solutions to a two-dimensional eikonal equation. II. Existence theorems. SIAM J. Math. Anal. 34, 805–835 (2003)

    Article  Google Scholar 

  56. Magnanini, R., Talenti, G.: On complex-valued solutions to a 2D eikonal equation. III. Analysis of a Bäcklund transformation. Appl. Anal. 85, 249–276 (2006)

    Article  Google Scholar 

  57. Marini, A., Otway, T.H.: Strong solutions to a class of boundary value problems on a mixed Riemannian-Lorentzian metric. In: Proceedings of the 10th AIMS Conference (to appear)

    Google Scholar 

  58. Moiseev, E.I., Likhomanenko, T.N.: On a nonlocal boundary value problem for the Lavrent’ev-Bitsadze equation [in Russian]. Dokl. Akad. Nauk. 446, 256–258 (2012) (translation in Dokl. Math. 86, 635–637 (2012))

    Google Scholar 

  59. Moiseev, E.I., Nefedov, P.V.: Tricomi problem for the Lavrent’ev-Bitsadze equation in a 3D domain. Integral Transform. Spec. Funct. 23, 761–768 (2012)

    Article  Google Scholar 

  60. Moiseev, E.I., Taranov, N.O.: Solution of a Gellerstedt problem for the Lavrent’ev-Bitsadze equation [in Russian]. Differ. Uravn. 45, 543–548 (2009) (translation in Differ. Equ. 45, 558–563 (2009))

    Google Scholar 

  61. Morawetz, C.S., Stevens, D.C., Weitzner, H.: A numerical experiment on a second-order partial differential equation of mixed type. Commun. Pure Appl. Math. 44, 1091–1106 (1991)

    Article  Google Scholar 

  62. Nakamura, G., Maeda, Y.: Local isometric embeddings of low dimensional Riemannain manifolds into Euclidean spaces. Trans. Am. Math. Soc. 313, 1–51 (1989)

    Google Scholar 

  63. Neuberger, J.W.: Sobolev Gradients and Differential Equations, 2nd edn. Lecture Notes in Mathematics, vol. 1670. Springer, Berlin (2010)

    Google Scholar 

  64. Otway, T.H.: A boundary-value problem for cold plasma dynamics. J. Appl. Math. 3, 17–33 (2003)

    Article  Google Scholar 

  65. Otway, T.H.: Energy inequalities for a model of wave propagation in cold plasma. Publ. Math. 195–234 (2008)

    Google Scholar 

  66. Otway, T.H.: Variational equations on mixed Riemannian-Lorentzian metrics. J. Geom. Phys. 58, 1043–1061 (2008)

    Google Scholar 

  67. Otway, T.H.: Mathematical aspects of the cold plasma model. In: Duan, J., Fu, X., Yang, Y. (eds.) Perspectives in Mathematical Sciences, pp. 181–210. World Scientific Press, Singapore (2010)

    Chapter  Google Scholar 

  68. Otway, T.H.: Unique solutions to boundary value problems in the cold plasma model. SIAM J. Math. Anal. 42, 3045–3053 (2010)

    Article  Google Scholar 

  69. Otway, T.H.: The Dirichlet Problem for Elliptic-Hyperbolic Equations of Keldysh Type. Springer, Berlin (2012)

    Google Scholar 

  70. Payne, K.R.: Interior regularity of the Dirichlet problem for the Tricomi equation. J. Math. Anal. Appl. 199, 271–292 (1996)

    Article  Google Scholar 

  71. Payne, K.R.: Propagation of singularities for solutions to the Dirichlet problem for squations of Tricomi type. Rend. Sem. Mat. Univ. Polit. Torino 54, 115–137 (1996)

    Google Scholar 

  72. Payne, K.R.: Boundary geometry and location of singularities for solutions to the Dirichlet problem for Tricomi type equations. Houston J. Math. 23, 709–731 (1997)

    Google Scholar 

  73. Payne, K.R.: Solvability theorems for linear equations of Tricomi type. J. Math. Anal. Appl. 215, 262–273 (1997)

    Article  Google Scholar 

  74. Payne, K.R.: Propagation of singularities phenomena for equations of Tricomi type. Appl. Anal. 68, 195–206 (1998)

    Article  Google Scholar 

  75. Pego, R.L., Serre, D.: Instabilities in Glimm’s scheme for two systems of mixed type. SIAM J. Numer. Anal. 25, 965–988 (1988)

    Article  Google Scholar 

  76. Piliya, A.D., Fedorov, V.I.: Singularities of the field of an electromagnetic wave in a cold anisotropic plasma with two-dimensional inhomogeneity. Sov. Phys. JETP 33, 210–215 (1971)

    Google Scholar 

  77. Poole, T.E.: The local isometric embedding problem for 3-dimensional Riemannian manifolds with cleanly vanishing curvature. Comm. Partial Differ. Equ. 35, 1802–1826 (2010)

    Article  Google Scholar 

  78. Protter, M.H.: Review of Equations of Mixed Type by M.M. Smirnov. Bull. (N.S.) Am. Math. Soc. 1, 534–538 (1979)

    Google Scholar 

  79. Riabouchinsky, D.: Sur l’analogie hydraulique des mouvements d’un fluide compressible. C.R. Academie des Sciences, Paris 195, 998 (1932)

    Google Scholar 

  80. Riemann, B.: Partielle Differentialgleichungen. Hattendorf’s ed. 1861. Nabu Press, Charleston (2010)

    Google Scholar 

  81. Schläfli, L.: Nota alla memoria del Sig. Beltrami, Sugli spazii di curvatura constante. Ann. di mat. 2e série 5, 170–193 (1873)

    Google Scholar 

  82. Stewart, J.M.: Signature change, mixed problems and numerical relativity. Class. Quantum Grav. 18, 4983–4995 (2001)

    Article  Google Scholar 

  83. Stoker, J.J.: Water Waves. Interscience, New York (1992)

    Google Scholar 

  84. Torre, C.G.: The helically reduced wave equation as a symmetric positive system. J. Math. Phys. 44, 6223–6232 (2003)

    Google Scholar 

  85. Torre, C.G.: Uniqueness of solutions to the helically reduced wave equation with Sommerfeld boundary conditions. J. Math. Phys. 47, 073501 (2006)

    Article  Google Scholar 

  86. Treves, F.: Hamiltonian fields, bicharactertistic strips in relation with existence and regularity of solutions of linear partial differential equations. Actes, Congrès Intern. Math. 2, 803–811 (1970)

    Google Scholar 

  87. Tricomi, F.: Sulle equazioni lineari alle derivate parziali di secondo ordine, di tipo misto. Rendiconti Atti dell’ Accademia Nazionale dei Lincei Ser. 5(14), 134–247 (1923)

    Google Scholar 

  88. Weitzner, H.: Lower hybrid waves in the cold plasma model. Commun. Pure Appl. Math. 38, 919–932 (1985)

    Article  Google Scholar 

  89. Xu, M., Yang, X.-P.: Existence of distributional solutions of closed Dirichlet problem for an elliptic-hyperbolic equation. J. Nonlinear Anal. Ser. A: TMA 17, 6512–6517 (2011)

    Article  Google Scholar 

  90. Yamamoto, Y.: Existence and uniqueness of a generalized solution for a system of equations of mixed type. Ph.D. thesis, Polytechnic University of New York (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Otway .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Otway, T.H. (2015). Overview of Elliptic–Hyperbolic PDE. In: Elliptic–Hyperbolic Partial Differential Equations. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-19761-6_2

Download citation

Publish with us

Policies and ethics