Skip to main content

Sampling in Euclidean and Non-Euclidean Domains: A Unified Approach

  • Chapter
Sampling Theory, a Renaissance

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Sampling theory is a fundamental area of study in harmonic analysis and signal and image processing. The purpose of this paper is to connect sampling theory with the geometry of the signal and its domain. It is relatively easy to demonstrate this connection in Euclidean spaces, but one quickly gets into open problems when the underlying space is not Euclidean. We focus primarily on Euclidean and hyperbolic geometries.There are numerous motivations for extending sampling to non-Euclidean geometries. Applications of sampling in non-Euclidean geometries are showing up areas from EIT to cosmology. Irregular sampling of bandlimited functions by iteration in hyperbolic space is possible, as shown by Feichtinger and Pesenson. Sampling in spherical geometry has been analyzed by many authors, e.g., Driscoll, Healy, Keiner, Kunis, McEwen, Potts, and Wiaux, and brings up questions about tiling the sphere. In Euclidean space, the minimal sampling rate for Paley-Wiener functions on \(\mathbb{R}^{d}\), the Nyquist rate, is a function of the bandwidth. No such rate has yet been determined for hyperbolic or spherical spaces. We look to develop a structure for the tiling of frequency spaces in both Euclidean and non-Euclidean domains. In particular, we establish Nyquist tiles and sampling groups in Euclidean geometry, and discuss the extension of these concepts to hyperbolic and spherical geometry and general orientable surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.V. Ahlfors, Conformal Invariants (McGraw-Hill, New York, 1973)

    MATH  Google Scholar 

  2. L.V. Ahlfors, Complex Analysis, 3rd edn. (McGraw-Hill, New York, 1979)

    MATH  Google Scholar 

  3. J.J. Benedetto, Harmonic Analysis and Applications (CRC Press, Boca Raton, FL, 1997)

    Google Scholar 

  4. C.A. Berenstein, Local tomography and related problems, in Radon Transforms and Tomography, ed. by E.T. Quinto, L. Ehrenpreis, A. Faridani, F. Gonzalez, E. Grinberg. Contemporary Mathematics, vol. 278 (American Mathematical Society, Providence, RI, 2001), pp. 3–14

    Google Scholar 

  5. C.A. Berenstein, E.C. Tarabusi, Integral geometry in hyperbolic spaces and electrical impedance tomography. SIAM J. Appl. Math. 56(3), 755–764 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. C.A. Berenstein, F. Gavilánez, J. Baras, Network Tomography. Contemporary Mathematics, vol. 405 (American Mathematical Society, Providence, RI, 2006), pp. 11–17

    Google Scholar 

  7. J.G. Christensen, G. Ólafsson, Sampling in spaces of bandlimited functions on commutative spaces, in Excursions in Harmonic Analysis, ed. by T.D. Andrews, R. Balan, J.J. Benedetto, W. Czaja, K.A. Okoudjou. Applied and Numerical Harmonic Analysis, vol. 1 (Birkhäuser/Springer, New York, 2013), pp. 35–69

    Google Scholar 

  8. N.J. Cornish, J.R. Weeks, Measuring the shape of the universe. Not. Am. Math. Soc. 45(11), 1463–1471 (1998)

    MathSciNet  MATH  Google Scholar 

  9. J.R. Driscoll, D.M. Healy, Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15(2), 202–250 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Dym, H.P. McKean, Fourier Series and Integrals (Academic, Orlando, FL, 1972)

    MATH  Google Scholar 

  11. H.M. Farkas, I. Kra, Riemann Surfaces (Springer, New York, 1980)

    Book  MATH  Google Scholar 

  12. H. Feichtinger, I. Pesenson, Recovery of band-limited functions on manifolds by an iterative algorithm, in Wavelets, Frames and Operator Theory, ed. by C. Heil, P.E.T. Jorgensen, D.R. Larson. Contemporary Mathematics, vol. 345 (American Mathematical Society, Providence, RI, 2004), pp. 137–152

    Google Scholar 

  13. H. Feichtinger, I. Pesenson, A reconstruction method for band-limited signals in the hyperbolic plane. Sampling Theory Signal Image Process. 4(3), 107–119 (2005)

    MathSciNet  MATH  Google Scholar 

  14. O. Forster, Lectures on Riemann Surfaces (Springer, New York, 1981)

    Book  MATH  Google Scholar 

  15. L. Grafakos, Classical and Modern Fourier Analysis (Pearson Education, Upper Saddle River, NJ, 2004)

    MATH  Google Scholar 

  16. K. Gröchenig, Describing functions: atomic decompositions versus frames. Monatsh. Math. 112(1), 1–42 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Gröchenig, Reconstruction algorithms in irregular sampling. Math. Comput. 59(199), 181–194 (1992)

    Article  MATH  Google Scholar 

  18. K. Gröchenig, Foundations of Time-Frequency Analysis (Birkhäuser, Boston, 2000)

    Google Scholar 

  19. K. Gröchenig, G. Kutyniok, K. Seip, Landau’s necessary density conditions for LCA groups. J. Funct. Anal. 255, 1831–1850 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Helgason, Geometric Analysis on Symmetric Spaces (American Mathematical Society, Providence, RI, 1994)

    MATH  Google Scholar 

  21. S. Helgason, Groups and Geometric Analysis (American Mathematical Society, Providence, RI, 2000)

    Book  MATH  Google Scholar 

  22. J.R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foundations (Clarendon Press, Oxford, 1996)

    MATH  Google Scholar 

  23. L. Hörmander, The Analysis of Linear Partial Differential Operators I (Distribution Theory and Fourier Analysis), 2nd edn. (Springer, New York, 1990)

    MATH  Google Scholar 

  24. J. Keiner, S. Kunis, D. Potts, Efficient reconstruction of functions on the sphere from scattered data. J. Fourier Anal. App. 13(4), 435–458 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Kuchment, Generalized transforms of Radon type and their applications, in Proceedings of Symposia in Applied Mathematics, vol. 63 (American Mathematical Society, Providence, RI, 2006), pp. 67–98

    Google Scholar 

  26. J.M. Lee, Riemannian Manifolds: An Introduction to Curvature (Springer, New York, 1997)

    Book  MATH  Google Scholar 

  27. B.Y. Levin, Lectures on Entire Functions (American Mathematical Society, Providence, RI, 1996)

    MATH  Google Scholar 

  28. J.D. McEwen, E. Wiaux, A novel sampling theorem on the sphere. IEEE Trans. Signal Process. 59(12), 617–644 (2011)

    Article  MathSciNet  Google Scholar 

  29. H. Nyquist, Certain topics in telegraph transmission theory. AIEE Trans. 47, 617–644 (1928)

    Google Scholar 

  30. I. Pesenson, A sampling theorem of homogeneous manifolds. Trans. Am. Math. Soc. 352(9), 4257–4269 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. A.P. Schuster, Sets of sampling and interpolation in Bergman spaces. Proc. Am. Math. Soc. 125(6), 1717–1725 (1997)

    Article  MATH  Google Scholar 

  32. K. Seip, Beurling type density theorems in the unit disk. Invent. Math. 113, 21–39 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. K. Seip, Regular sets of sampling and interpolation for weighted Bergman spaces. Proc. Am. Math. Soc. 117(1), 213–220 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  35. C.E. Shannon, Communications in the presence of noise. Proc. IRE. 37, 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  36. I.M. Singer, J.A. Thorpe, Lecture Notes on Elementary Topology and Geometry (Springer, New York, 1967)

    MATH  Google Scholar 

  37. R. Young, An Introduction to Nonharmonic Fourier Series (Academic, New York, 1980)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable input. First author’s research was partially supported by US Army Research Office Scientific Services program, administered by Battelle (TCN 06150, Contract DAAD19-02-D-0001) and US Air Force Office of Scientific Research Grant Number FA9550-12-1-0430.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Casey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Casey, S.D., Christensen, J.G. (2015). Sampling in Euclidean and Non-Euclidean Domains: A Unified Approach. In: Pfander, G. (eds) Sampling Theory, a Renaissance. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-19749-4_9

Download citation

Publish with us

Policies and ethics