Skip to main content

Noise-Shaping Quantization Methods for Frame-Based and Compressive Sampling Systems

  • Chapter
Sampling Theory, a Renaissance

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Noise shaping refers to an analog-to-digital conversion methodology in which quantization error is arranged to lie mostly outside the signal spectrum by means of oversampling and feedback. Recently it has been successfully applied to more general redundant linear sampling and reconstruction systems associated with frames as well as non-linear systems associated with compressive sampling. This chapter reviews some of the recent progress in this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Achlioptas, Database-friendly random projections, in Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (ACM, New York, 2001), pp. 274–281

    Book  Google Scholar 

  2. J.J. Benedetto, A.M. Powell, Ö. Yılmaz, Second-order sigma–delta (\(\varSigma \varDelta\)) quantization of finite frame expansions. Appl. Comput. Harmon. Anal. 20(1), 126–148 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. J.J. Benedetto, A.M. Powell, Ö. Yılmaz, Sigma-delta (\(\varSigma \varDelta\)) quantization and finite frames. IEEE Trans. Inf. Theory 52(5), 1990–2005 (2006)

    Article  MATH  Google Scholar 

  4. J. Blum, M. Lammers, A.M. Powell, Ö. Yılmaz, Sobolev duals in frame theory and sigma-delta quantization. J. Fourier Anal. Appl. 16(3), 365–381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Blumensath, M.E. Davies, Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. B.G. Bodmann, V.I. Paulsen, S.A. Abdulbaki, Smooth frame-path termination for higher order sigma-delta quantization. J. Fourier Anal. Appl. 13(3), 285–307 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. T.T. Cai, A. Zhang. Sparse representation of a polytope and recovery of sparse signals and low-rank matrices. IEEE Trans. Inf. Theory 60(1), 122–132 (2014)

    Article  MathSciNet  Google Scholar 

  8. E.J. Candès, J.K. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MATH  Google Scholar 

  9. J.C. Candy, G.C. Temes (eds.), Oversampling Delta-Sigma Data Converters: Theory, Design and Simulation (Wiley/IEEE, New York, 1991)

    Google Scholar 

  10. E. Chou, Beta-Duals of Frames and Applications to Problems in Quantization. Ph.D. Thesis, New York University, 2013

    Google Scholar 

  11. E. Chou, C.S. Güntürk, Distributed noise-shaping quantization: I. Beta duals of finite frames and near-optimal quantization of random measurements. Preprint (2014) [arXiv:1405.4628]

    Google Scholar 

  12. K. Dajani, C. Kraaikamp, From greedy to lazy expansions and their driving dynamics. Expo. Math. 20(4), 315–327 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Daubechies, R. DeVore, Approximating a bandlimited function using very coarsely quantized data: a family of stable sigma-delta modulators of arbitrary order. Ann. Math. (2) 158(2), 679–710 (2003)

    Google Scholar 

  14. I. Daubechies, R.A. DeVore, C.S. Güntürk, V.A. Vaishampayan, A/D conversion with imperfect quantizers. IEEE Trans. Inf. Theory 52(3), 874–885 (2006)

    Article  MATH  Google Scholar 

  15. P. Deift, C.S. Güntürk, F. Krahmer, An optimal family of exponentially accurate one-bit sigma-delta quantization schemes. Commun. Pure Appl. Math. 64(7), 883–919 (2011)

    Article  MATH  Google Scholar 

  16. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Edelman, Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl. 9(4), 543–560 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Feng, F. Krahmer, An RIP approach to Sigma-Delta quantization for compressed sensing. IEEE Signal Process. Lett. 21(11), 1351–1355 (2014)

    Article  Google Scholar 

  19. S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing (Birkhäuser, Basel, 2013)

    Book  MATH  Google Scholar 

  20. V.K. Goyal, M. Vetterli, N.T. Thao, Quantized overcomplete expansions in \(\mathbb{R}^{N}\): analysis, synthesis, and algorithms. IEEE Trans. Inf. Theory 44(1), 16–31 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. C.S. Güntürk, One-bit sigma-delta quantization with exponential accuracy. Commun. Pure Appl. Math. 56(11), 1608–1630 (2003)

    Article  MATH  Google Scholar 

  22. C.S. Güntürk, M. Lammers, A. Powell, R. Saab, Ö. Yılmaz, Sigma delta quantization for compressed sensing, in 2010 44th Annual Conference on Information Sciences and Systems (CISS), March 2010, pp. 1–6

    Google Scholar 

  23. C.S. Güntürk, M. Lammers, A.M. Powell, R. Saab, Ö. Yılmaz, Sobolev duals for random frames and \(\varSigma \varDelta\) quantization of compressed sensing measurements. Found. Comput. Math. 13(1), 1–36 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. D.L. Hanson, F.T. Wright, A bound on tail probabilities for quadratic forms in independent random variables. Ann. Math. Stat. 42(3), 1079–1083 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Inose, Y. Yasuda, A unity bit coding method by negative feedback. Proc. IEEE 51(11), 1524–1535 (1963)

    Article  Google Scholar 

  26. M. Iwen, R. Saab, Near-optimal encoding for sigma-delta quantization of finite frame expansions. J. Fourier Anal. Appl. 16, 1–19 (2013)

    MathSciNet  Google Scholar 

  27. W.B. Johnson, J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space. Contemp. Math. 26, 189–206 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Krahmer, R. Ward, Lower bounds for the error decay incurred by coarse quantization schemes. Appl. Comput. Harmon. Anal. 32(1), 131–138 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. F. Krahmer, R. Saab, R. Ward, Root-exponential accuracy for coarse quantization of finite frame expansions. IEEE Trans. Inf. Theory 58(2), 1069–1079 (2012)

    Article  MathSciNet  Google Scholar 

  30. F. Krahmer, R. Saab, Ö. Yılmaz, Sigma-delta quantization of sub-Gaussian frame expansions and its application to compressed sensing. Inf. Inference 3(1), 40–58 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Lammers, A.M. Powell, Ö. Yılmaz, Alternative dual frames for digital-to-analog conversion in sigma–delta quantization. Adv. Comput. Math. 32(1), 73–102 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. G.G. Lorentz, M. von Golitschek, Y. Makovoz, Constructive Approximation: Advanced Problems. Grundlehren der mathematischen Wissenschaften (Springer, New York, 1996)

    Google Scholar 

  33. D. Needell, J.A. Tropp, Cosamp: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. S.R. Norsworthy, R. Schreier, G.C. Temes, (eds.), Delta-Sigma-Converters: Theory, Design and Simulation (Wiley/IEEE, New York, 1996)

    Google Scholar 

  35. W. Parry, On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11, 401–416 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Rudelson, R. Vershynin, Non-asymptotic theory of random matrices: extreme singular values, in Proceedings of the International Congress of Mathematicians, vol. III (Hindustan Book Agency, New Delhi, 2010), pp. 1576–1602

    Google Scholar 

  37. M. Rudelson, R. Vershynin, Hanson-Wright inequality and sub-gaussian concentration. Electron. Commun. Probab. 18, 1–9 (2013)

    Article  MathSciNet  Google Scholar 

  38. R. Saab, Ö. Yılmaz, Sparse recovery by non-convex optimization–instance optimality. Appl. Comput. Harmon. Anal. 29(1), 30–48 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Saab, R. Wang, Ö. Yılmaz, Near-optimal compression for compressed sensing, in Data Compression Conference (DCC 2015) April 2015, pp. 113–122

    Google Scholar 

  40. R. Saab, R. Wang, Ö. Yılmaz, Quantization of compressive samples with stable and robust recovery. CoRR, (2015), http://arxiv.org/abs/1504.00087

  41. R. Schreier, G.C. Temes, Understanding Delta-Sigma Data Converters (Wiley/IEEE Press, New York, 2004)

    Book  Google Scholar 

  42. R. Vershynin, Introduction to the non-asymptotic analysis of random matrices, in Compressed Sensing: Theory and Applications, ed. by Y.C. Eldar, G. Kutyniok. (Cambridge University Press, Cambridge, 2012), pp. xii+544

    Google Scholar 

  43. T. Zhang, Sparse recovery with Orthogonal Matching Pursuit under RIP. IEEE Trans. Inf. Theory 57(9), 6215–6221 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

FK and RS acknowledge support by the German Science Foundation (DFG) in the context of the Emmy-Noether Junior Research Group KR 4512/1-1 “RaSenQuaSI”. ÖY was funded in part by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (22R82411), an NSERC Accelerator Award (22R68054) and an NSERC Collaborative Research and Development Grant DNOISE II (22R07504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan Chou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chou, E., Güntürk, C.S., Krahmer, F., Saab, R., Yılmaz, Ö. (2015). Noise-Shaping Quantization Methods for Frame-Based and Compressive Sampling Systems. In: Pfander, G. (eds) Sampling Theory, a Renaissance. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-19749-4_4

Download citation

Publish with us

Policies and ethics