Skip to main content

A Sheaf-Theoretic Perspective on Sampling

  • Chapter

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Sampling theory has traditionally drawn tools from functional and complex analysis. Past successes, such as the Shannon-Nyquist theorem and recent advances in frame theory, have relied heavily on the application of geometry and analysis. The reliance on geometry and analysis means that these results are dependent on the symmetries of the space of samples. There is a subtle interplay between the topology of the domain of the functions being sampled, and the class of functions themselves. Bandlimited functions are somewhat limiting; often one wishes to sample from other classes of functions. The correct topological tool for modeling all of these situations is the sheaf; a tool which allows local structure and consistency to derive global inferences. This chapter develops a general sampling theory for sheaves using the language of exact sequences, recovering the Shannon-Nyquist theorem as a special case. It presents sheaf-theoretic approach by solving several different sampling problems involving non-bandlimited functions. The solution to these problems show that the topology of the domain has a varying level of importance depending on the class of functions and the specific sampling question being studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    An open cover of a topological space X is a collection of open sets whose union is X.

  2. 2.

    N must be at least 3 to use an abstract simplicial complex model of the circle. If N is 1 or 2, one must instead use a CW complex. This does not change the analysis presented here.

  3. 3.

    The interested reader should consider [12] for a practical discussion of several of these conditions in dimensions 1 and 2.

  4. 4.

    |A| represents the cardinality of a set A.

References

  1. M. Baker, X. Faber, Metrized graphs, Laplacian operators, and electrical networks, in Quantum Graphs and Their Applications (American Mathematical Society, Providence, 2006), pp. 15–34

    Book  Google Scholar 

  2. M. Baker, R. Rumely, Harmonic analysis on metrized graphs. Can. J. Math. 59(2), 225–275 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Benedetto, W. Heller, Irregular sampling and the theory of frames: I. Note Math. 10(1), 103–125 (1990)

    MathSciNet  Google Scholar 

  4. G. Bredon, Sheaf Theory (Springer, New York, 1997)

    Book  MATH  Google Scholar 

  5. J. Brüning, M. Lesch, Hilbert complexes. J. Funct. Anal. 108, 88–132 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Chazal, D. Cohen-Steiner, A. Lieutier, A sampling theory for compact sets in euclidean space. Discret. Comput. Geom. 41, 461–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Curry, Sheaves, cosheaves and applications (2013) [arxiv:1303.3255]

    Google Scholar 

  8. J. Curry, R. Ghrist, M. Robinson, Euler calculus and its applications to signals and sensing, in Proceedings of Symposia in Applied Mathematics: Advances in Applied and Computational Topology, ed. by A. Zomorodian (American Mathematical Society, Providence, 2012)

    Google Scholar 

  9. P. Dragotti, M. Vetterli, T. Blue, Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang–Fix. IEEE Trans. Signal Process 55(5), (2007)

    Google Scholar 

  10. M. Ebata, M. Eguchi, S. Koizumi, K. Kumahara, Analogues of sampling theorems for some homogeneous spaces. Hiroshima Math. J. 36, 125–140 (2006)

    MathSciNet  MATH  Google Scholar 

  11. L. Ehrenpreis, Sheaves and differential equations. Proc. Am. Math. Soc. 7(6), 131–1138 (1956)

    Article  Google Scholar 

  12. G. Farin, Curves and Surfaces for CAGD (Elsevier, Amsterdam, 1985)

    Google Scholar 

  13. H.G. Feichtinger, K. Gröchenig, Theory and practice of irregular sampling. Wavelets: Mathematics and Applications (CRC Press, Boca Raton, 1994), pp. 305–363

    Google Scholar 

  14. H. Feichtinger, I. Pesenson, A reconstruction method for band-limited signals on the hyperbolic plane. Sampling Theory Signal Image Process. 4(2), 107–119 (2005)

    MathSciNet  MATH  Google Scholar 

  15. R. Ghrist, Y. Hiraoka, Applications of sheaf cohomology and exact sequences to network coding, in Proc. NOLTA (2011)

    Google Scholar 

  16. R. Godement, Topologie algebrique et théorie des faisceaux (Herman, Paris, 1958)

    MATH  Google Scholar 

  17. K. Gröchening, Reconstruction algorithms in irregular sampling. Math. Comput. 59(199), 181–194 (1992)

    Article  Google Scholar 

  18. A. Hatcher, Algebraic Topology (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  19. J.H. Hubbard, Teichmüller Theory, vol. 1 (Matrix Editions, Ithaca, 2006)

    MATH  Google Scholar 

  20. B. Iverson, Cohomology of Sheaves. Aarhus universitet, Matematisk institut (1984)

    Google Scholar 

  21. P. Kuchment, Quantum graphs: an introduction and a brief survey, in Analysis on Graphs and Its Applications. (Isaac Newton Institute for Mathematical Sciences, Cambridge, 2007), pp. 291–312

    Google Scholar 

  22. J. Lilius, Sheaf semantics for Petri nets. Technical report, Helsinki University of Technology, Digital Systems Laboratory (1993)

    Google Scholar 

  23. P. Niyogi, S. Smale, S. Weinberger, Finding the homology of submanifolds with high confidence from random samples, in Twentieth Anniversary Volume, ed. by R. Pollack, J. Pach, J.E. Goodman (Springer, New York, 2009), pp. 1–23

    Chapter  Google Scholar 

  24. I. Pesenson, Sampling of band-limited vectors. J. Fourier Anal. Appl. 7(1), 93–100 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. I. Pesenson, An approach to spectral problems on riemannian manifolds. Pac. J. Math. 215(1), 183–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. I. Pesenson, Band limited functions on quantum graphs. Proc. Am. Math. Soc. 133(12), 3647–3656 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. I. Pesenson, Polynomial splines and eigenvalue approximations on quantum graphs. J. Approx. Theory 135(2), 203–220 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. I. Pesenson, Analysis of band-limited functions on quantum graphs. Appl. Comput. Harmon. Anal. 21(2), 230–244 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. I. Pesenson, Sampling in Paley-Wiener spaces on combinatorial graphs. Trans. Am. Math. Soc. 360(10), 5603 (2008)

    Google Scholar 

  30. I.Z. Pesenson, Removable sets and approximation of eigenvalues and eigenfunctions on combinatorial graphs. Appl. Comput. Harmon. Anal. 29, 123–133 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. I.Z. Pesenson, M.Z. Pesenson, Sampling, filtering and sparse approximations on combinatorial graphs. J. Fourier Anal. Appl. 16(6), 921–942 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Robinson, Inverse problems in geometric graphs using internal measurements (2010) [arxiv:1008.2933]

    Google Scholar 

  33. M. Robinson, Asynchronous logic circuits and sheaf obstructions. Electron. Notes Theor. Comput. Sci. 283, 159–177 (2012)

    Article  Google Scholar 

  34. M. Robinson, Understanding networks and their behaviors using sheaf theory, in GlobalSIP (2013)

    Google Scholar 

  35. M. Robinson, Topological Signal Processing (Springer, Heidelberg, 2014)

    Book  MATH  Google Scholar 

  36. A. Schuster, D. Varolin, Interpolation and sampling for generalized Bergman spaces on finite Riemann surfaces. Rev. Mat. Iberoam.. 24(2), 499–530 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Shepard, A cellular description of the derived category of a stratified space. Ph.D. thesis, Brown University, 1980

    Google Scholar 

  38. S. Smale, D.X. Zhou, Shannon sampling and function reconstruction from point values. Bull. Am. Math. Soc. 41(3), 279–306 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Unser, Splines: a perfect fit for signal and image processing. IEEE Signal Process. Mag. 16(6), 22–38 (1999)

    Article  Google Scholar 

  40. M. Unser, Sampling–50 years after Shannon. Proc. IEEE 88(4), 569–587 (2000)

    Article  Google Scholar 

  41. M. Unser, J. Zerubia, A generalized sampling theory without band-limiting constraints. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 45(8), 959–969 (1998)

    Article  MATH  Google Scholar 

  42. R.G. Vaughan, N.L. Scott, D.R. White, The theory of bandpass sampling. IEEE Trans. Signal Process. 39(9), 1973–1984 (1991)

    Article  Google Scholar 

  43. M. Vetterli, P. Marziliano, T. Blu, Sampling signals with finite rate of innovation. IEEE Trans. Signal Process. 50(6), 1417–1428 (2002)

    Article  MathSciNet  Google Scholar 

  44. S. Zhang, Admissible pairing on a curve. Invent. Math. 112(1), 171–193 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partly supported under Federal Contract No. FA9550-09-1-0643. The author also wishes to thank the editor for the invitation to write this chapter. Portions of this chapter appeared in the proceedings of SampTA 2013, published by EURASIP. Finally, the author wishes to thank Isaac Pesenson for insightful comments that greatly improved the readability of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Robinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Robinson, M. (2015). A Sheaf-Theoretic Perspective on Sampling. In: Pfander, G. (eds) Sampling Theory, a Renaissance. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-19749-4_10

Download citation

Publish with us

Policies and ethics