Skip to main content

Design of Shaping Machine and Tooling Systems for Gear Manufacturing

  • Chapter
  • First Online:
Theory and Practice of Gearing and Transmissions

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 34))

Abstract

The development and manufacturing of gear pairs is determined by a system combining the kinematic basis of the relative motions between workpiece and tool with the necessary production technology. This system unites the two subsystems of theory and technology. Via a multitude of parameters, gears can be assigned to different classes according to the range of existence. The paper describes a mathematical model for determining the range of existence for the general kinematic scheme of gear shaping. This model is based on an analysis of the existing kinematic schemes of theoretical and real shaping. Based on a morphological approach, individual kinematic shaping schemes are classified, and their mathematical models are developed. The shaping schemes, as well as the necessary translational and rotational motion matrices, are exemplarily presented for a gear manufacturing machine using the shaping principle. The modern approaches to the principles of designing equipment and instrumentation systems for gear manufacturing are presented. Methodical basics for selecting the optimal machine configuration depending on the technical and economic requirements for the machining and form of a gear’s tooth profile are stated. The system for theoretical and technological optimization synthesis of instrumentation systems for gear manufacturing is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anikin JV (1975) Sinusoidal engagement. Fundamentals of Geometry and Kinematics. VGU, Voronezh

    Google Scholar 

  2. Demenego A, Vecchiato D, Litvin FL, Nervegna N, Manco S (2002) Design and simulation of meshing of a cycloidal pump. Mech Mach Theory 37:311–332

    Article  MATH  Google Scholar 

  3. Denavit J, Hartenberg RS (1955) A kinematic notation for lower-pair mechanisms based on matrices. ASME J Appl Mech 77:215–221

    MathSciNet  Google Scholar 

  4. Erichov ML (1972) Principles of systematization, analysis methods and issue of synthesis. Dissertation, Dr. Sc. techn, Habarovsk

    Google Scholar 

  5. Granovski GI, Granovski VG (1985) Cutting of metal. Higher school, Moskow

    Google Scholar 

  6. Katsumi Nomizu (1994) Takeshi sasaki: affine differential geometry. Cambridge University Press, Cambridge, XIV

    Google Scholar 

  7. Kolchin NI (1949) Analytical calculation of plane and three-dimensional engagement. Mashgis, Moscow-Leningrad

    Google Scholar 

  8. Konovalov GG (1961) Fundamentals of new method of metal cutting. ASB, Minsk

    Google Scholar 

  9. Krivosheya AV, Petasyuk OU, Melnik VE, Korinets AV (2004) Procedure of setting and mathematical description of the initial form-generating profiles. J Superhard Mater 1:73–85

    Google Scholar 

  10. Litvin FL, Fuentes A, Gonzalez-Perez I, Carnevali L, Sep TM (2002) New version of novikov-wildhaber helical gears: computerized design, simulation of meshing and stress analysis Comput. Methods Appl Mech Eng 191:5707–5740

    Article  MATH  Google Scholar 

  11. Litvin FL, Fuentes A (2004) Gear geometry and applied theory, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  12. Perepeliza BA, Kondusova EB, Filimonov EV (2002) Features of cutting tools 3D modeling on basis of space multiparameter reflection. Cutting and tool in technological systems NTU « KhPI », vol 62, pp 99–103

    Google Scholar 

  13. Radzevich SP (2007) Kinematic geometry of surface machining, CRC Press Inc, Boca Raton

    Google Scholar 

  14. Rodin PR (1981) Shaping fundamentals of surface by cutting. Vishcha Shkola, Kiev

    Google Scholar 

  15. Reshetov DN, Portman VT (1988) Accuracy of machine tools. New York, ASME-Press, p 304

    Google Scholar 

  16. Sheveleva GI (1999) Shaping and contact theory of moving bodies. “Stanki”, Moscow

    Google Scholar 

  17. Vulgakov EB, Dorofeev VL (2002) Computer design of involute gearing by generalizing parameters. Convers Manuf 6:148–154

    Google Scholar 

  18. Wildenhof P (2007) Voraussetzungen und Möglichkeiten für die Realisierung einer Gleitflächenverzahnung. Konstruktion 59(9):107–113

    Google Scholar 

  19. Danilchenko Yu M, Krivosheya AV, Karska AA, Storchak MG, Pasternak SI (2011) Initial generation of machine tools coordinate codes modern technology in mechanical engineering, vol. 6, Kharkov: NTU “HPI”, pp 23–28

    Google Scholar 

  20. Heisel U, Pasternak S, Storchak M, Schaal M, Danilchenko Yu (2010) Modellieren des Verzahnens mit Scheibenwerkzeugen ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb. Nr. 7–8:649–654

    Google Scholar 

  21. Averjanov OI (1987) The modular principle of machine tools with CNC building. Machine building, Moscow, 232 p

    Google Scholar 

  22. Dayhoff J (1990) Neural networks. Van Nostrand Reihold, New York

    Google Scholar 

  23. Inasaki I, Kishinami K, Sakamoto S, Takeuchi Y, Tanaka F (1997) Shape generation theory of machine tools. Yokendo Press

    Google Scholar 

  24. Ito Y (2008) Modular design for machine tools. McGraw Hill, New York, 504 p

    Google Scholar 

  25. Ito Y, Shinno H (1990) Structural description of machine tools. Trans JSME Ser C 46(405):562–571

    Article  Google Scholar 

  26. Iwata K, Sugimura N, Peng L (1990) A study of the fundamental design of machine structure for machining. Trans JSME Ser C 56(523):803–809

    Article  Google Scholar 

  27. Jain AK, Mao J, Mohiuddin KM (1996) Artificial neural networks: a tutorial. Computer 29(3):31–44

    Article  Google Scholar 

  28. Kudinov AV (2001) Features of neural network modeling tools. Machine and Tool 1, pp 13–18

    Google Scholar 

  29. Medvedev VS, Potemkin VG (2002) Neural networks. MATLAB 6. DIALOG, Moscow, 496 p

    Google Scholar 

  30. Moriwaki T (2008) Multi-functional machine tool. Annals of the CIRP 57(1):736–749

    Article  Google Scholar 

  31. Moriwaki T, Nunobiki M (1992) Object-oriented design support system for machine tools. Trans JSME Ser C 58(546):655–660

    Article  Google Scholar 

  32. Portman V, Inasaki I, Sakakura M, Iwatate M (1998) Form-shaping system of machine tools: theory and applications. Annals of the CIRP 47(1):329–332

    Article  Google Scholar 

  33. Patan K (2008) Artificial neural networks for the modeling and fault diagnosis of technical processes. Springer, Berlin, Heidelberg, 206 p

    Google Scholar 

  34. Rey GD, Wender KF (2011) Neuronale Netze: Eine Einführung in die Grundlagen, Anwendungen und Datenauswertung. 2. Auflage, Huber, Bern, 205 S

    Google Scholar 

  35. Rutkowskaja D, Pilinskij M, Rutkowskaja L (2006) Neural networks, genetic algorithms and fuzzy systems. Telekom, Moscow, 452 p

    Google Scholar 

  36. Shinno H, Ito Y (1987) Computer aided concept design for structural configuration of machine tools: variant design using directed graph. Trans ASME J Mech Trans Autom Des 109:372–376

    Article  Google Scholar 

  37. Spicer P, Koren Y, Shpitalni M, Yip-Hoi D (2002) Design principles for machining system configurations. Annals CIRP 51(1):275–280

    Article  Google Scholar 

  38. Vragov Yu D (1978) Analysis of machine tools configurations. (Fundamentals of componetik). Machine building, Moscow, 208 p

    Google Scholar 

  39. Weck M, Brecher C (2006) Werkzeugmaschinen. In 6 Bänder, Springer, Berlin Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Storchak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Krivosheya, A., Danilchenko, J., Storchak, M., Pasternak, S. (2016). Design of Shaping Machine and Tooling Systems for Gear Manufacturing. In: Goldfarb, V., Barmina, N. (eds) Theory and Practice of Gearing and Transmissions. Mechanisms and Machine Science, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-319-19740-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19740-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19739-5

  • Online ISBN: 978-3-319-19740-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics