Skip to main content

Flying Depth Camera for Indoor Mapping and Localization

  • Conference paper
  • First Online:
Ambient Intelligence - Software and Applications

Abstract

This paper introduces a flying robot mapping and localization proposal from an onboard depth camera. The miniature flying robot is part of an ongoing project related to ambient assisted living and home health. The flying depth camera is used with a double function; firstly, as a range sensor for mapping from scratch during navigation, and secondly, as a gray-scale camera for localization. The Harris corner detection algorithm is implemented as key point detector for the creation and/or identification of indoor spatial relations. During the localization phase, the spatial relations created from detected corners in the mapping phase are compared to the corners identified in the map. The flying robot position is estimated by matching these spatial relations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Iwakura, K. Nonami, Indoor localization of flying robot by means of infrared sensors. J. Robot. Mechatron. 25, 201–210 (2013)

    Google Scholar 

  2. A. Fernández-Caballero, J.M. Latorre, J.M. Pastor, A. Fernández-Sotos, Improvement of the elderly quality of life and care through smart emotion regulation, Ambient Assisted Living and Daily Activities, pp. 348–355, 2014

    Google Scholar 

  3. J.C. Castillo, D. Carneiro, J. Serrano-Cuerda, P. Novais, A. Fernández-Caballero, J. Neves, A multi-modal approach for activity classification and fall detection. Int. J. Syst. Sci. 45, 810–824 (2014)

    Article  Google Scholar 

  4. D. Carneiro, J.C. Castillo, P. Novais, A. Fernández-Caballero, J. Neves, Multimodal behavioral analysis for non-invasive stress detection. Expert Syst. Appl. 39, 13376–13389 (2012)

    Article  Google Scholar 

  5. M. Oliver, F. Montero, A. Fernández-Caballero, P. González, J.P. Molina, RGB-D assistive technologies for acquired brain injury: description and assessment of user experience. Expert Syst. (2014). doi:10.1111/exsy.12096

  6. A. Briod, P. Kornatowski, J.-C. Zufferey, D. Floreano, A collision-resilient flying robot. J. Field Robot. 31, 496–509 (2014)

    Article  Google Scholar 

  7. K.M. Wurm, C. Stachniss, G. Grisetti, Bridging the gap between feature- and grid-based SLAM. Robot. Auton. Syst. 58, 140–148 (2010)

    Article  Google Scholar 

  8. J. Martínez-Gómez, A. Fernández-Caballero, I. García-Varea, L. Rodríuez, C. Romero-González, A taxonomy of vision systems for ground mobile robots. Int. J. Adv. Robot. Syst. 11, 111 (2014)

    Google Scholar 

  9. T. Collins, Occupancy grid learning using contextual forward modelling. J. Intell. Robot. Syst. 64, 505–542 (2011)

    Article  Google Scholar 

  10. S. Almansa-Valverde, J.C. Castillo, A. Fernández-Caballero, Mobile robot map building from time-of-flight camera. Expert Syst. Appl. 39, 8835–8843 (2012)

    Article  Google Scholar 

  11. A. Ramisa, A. Goldhoorn, D. Aldavert, R. Toledo, R. Lopez de Mantaras, Combining invariant features and the ALV homing method for autonomous robot navigation based on panoramas. J. Intell. Robot. Syst. 64, 625–649 (2011)

    Article  Google Scholar 

  12. M. Bosse, R. Zlot, Keypoint design and evaluation for place recognition in 2D lidar maps. Robot. Auton. Syst. 57, 1211–1224 (2009)

    Article  Google Scholar 

  13. M. Cummins, P. Newman, FAB-MAP: probabilistic localization and mapping in the space of appearance. Int. J. Robot. Res. 27, 647–665 (2008)

    Article  Google Scholar 

  14. D.G. Lowe, Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  15. G. Arbeiter, J. Fischer, A. Verl, 3D perception and modeling for manipulation on Care-O-Bot 3, in 2010 IEEE International Conference on Robotics and Automation, p. 5, 2010

    Google Scholar 

  16. H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, SURF: speeded up robust features. Comput. Vis. Image Underst. 110, 346–359 (2008)

    Article  Google Scholar 

  17. J. Li, N.M. Allinson, A comprehensive review of current local features for computer vision. Neurocomputing 71, 1771–1787 (2008)

    Article  Google Scholar 

  18. S. Smith, J. Brady, Susan: a new approach to low-level image-processing. Int. J. Comput. Vis. 23, 45–78 (1997)

    Article  Google Scholar 

  19. C. Harris, M. Stephens, A combined corner and edge detector, in The Fourth Alvey Vision Conference, pp. 147–151, 1988

    Google Scholar 

  20. J. Lee, H. Ko, Gradient-based local affine invariant feature extraction for mobile robot localization in indoor environments. Pattern Recogn. Lett. 29, 1934–1940 (2008)

    Article  Google Scholar 

  21. A. Fernández-Caballero, M.T. López, S. Saiz-Valverde, Dynamic stereoscopic selective visual attention (DSSVA): integrating motion and shape with depth in video segmentation. Expert Syst. Appl. 34, 1394–1402 (2008)

    Article  Google Scholar 

  22. G. Bennett, Probability inequalities for the sum of independent random variables. J. Am. Stat. Assoc. 57, 33–45 (1962)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Spanish Ministerio de Economía y Competitividad / FEDER under TIN2013-47074-C2-1-R grant.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Belmonte, L.M., Castillo, J.C., Fernández-Caballero, A., Almansa-Valverde, S., Morales, R. (2015). Flying Depth Camera for Indoor Mapping and Localization. In: Mohamed, A., Novais, P., Pereira, A., Villarrubia González, G., Fernández-Caballero, A. (eds) Ambient Intelligence - Software and Applications. Advances in Intelligent Systems and Computing, vol 376. Springer, Cham. https://doi.org/10.1007/978-3-319-19695-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19695-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19694-7

  • Online ISBN: 978-3-319-19695-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics