Skip to main content

Recent Advances and Novel Treatments of Pancreatic Masses

  • Chapter
Pancreatic Masses

Abstract

The advent of linear echoendoscopic ultrasound (EUS) in the 1990s has transformed EUS from a purely diagnostic modality to a platform for advanced diagnostic and therapeutic applications. The development of EUS-guided celiac ganglion neurolysis started a new era in EUS-guided techniques, where the fine needle has become the vehicle for delivery of various ablative agents, chemotherapeutic agents, and miniature devices. The following is an overview of recent advances and novel EUS-guided treatments of pancreatic tumors, including EUS-guided radiofrequency ablation, EUS-guided antitumor agents, and EUS-guided photodynamic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fegrachi S, et al. Radiofrequency ablation for unresectable locally advanced pancreatic cancer: a systematic review. HPB (Oxford). 2014;16(2):119–23.

    Article  Google Scholar 

  2. Goldberg SN, et al. EUS-guided radiofrequency ablation in the pancreas: results in a porcine model. Gastrointest Endosc. 1999;50(3):392–401.

    Article  CAS  PubMed  Google Scholar 

  3. Carrara S, et al. Endoscopic ultrasound-guided application of a new hybrid cryotherm probe in porcine pancreas: a preliminary study. Endoscopy. 2008;40(4):321–6.

    Article  CAS  PubMed  Google Scholar 

  4. Carrara S, et al. Endoscopic ultrasound-guided application of a new internally gas-cooled radiofrequency ablation probe in the liver and spleen of an animal model: a preliminary study. Endoscopy. 2008;40(9):759–63.

    Article  CAS  PubMed  Google Scholar 

  5. Petrone MC, et al. US-guided application of a new hybrid probe in human pancreatic adenocarcinoma: an ex vivo study. Gastrointest Endosc. 2010;71(7):1294–7.

    Article  PubMed  Google Scholar 

  6. Varadarajulu S, Jhala NC, Drelichman ER. EUS-guided radiofrequency ablation with a prototype electrode array system in an animal model (with video). Gastrointest Endosc. 2009;70(2):372–6.

    Article  PubMed  Google Scholar 

  7. Gaidhane M, et al. Endoscopic ultrasound-guided radiofrequency ablation (EUS-RFA) of the pancreas in a porcine model. Gastroenterol Res Pract. 2012;2012:431451.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Kim HJ, et al. EUS-guided radiofrequency ablation of the porcine pancreas. Gastrointest Endosc. 2012;76(5):1039–43.

    Article  PubMed  Google Scholar 

  9. Arcidiacono PG, et al. Feasibility and safety of EUS-guided cryothermal ablation in patients with locally advanced pancreatic cancer. Gastrointest Endosc. 2012;76(6):1142–51.

    Article  PubMed  Google Scholar 

  10. Pai M, et al. Endoscopic ultrasound guided radiofrequency ablation (EUS- RFA) for pancreatic ductal adenocarcinoma. Gut. 2013;62:A153.

    Article  Google Scholar 

  11. Chang KJ, et al. Phase I clinical trial of allogeneic mixed lymphocyte culture (cytoimplant) delivered by endoscopic ultrasound-guided fine-needle injection in patients with advanced pancreatic carcinoma. Cancer. 2000;88(6):1325–35.

    Article  CAS  PubMed  Google Scholar 

  12. Mulvihill S, et al. Safety and feasibility of injection with an E1B-55 kDa gene-deleted, replication-selective adenovirus (ONYX-015) into primary carcinomas of the pancreas: a phase I trial. Gene Ther. 2001;8(4):308–15.

    Article  CAS  PubMed  Google Scholar 

  13. Hecht JR, et al. A phase I/II trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res. 2003;9(2):555–61.

    CAS  PubMed  Google Scholar 

  14. Hecht JR, et al. EUS or percutaneously guided intratumoral TNFerade biologic with 5-fluorouracil and radiotherapy for first-line treatment of locally advanced pancreatic cancer: a phase I/II study. Gastrointest Endosc. 2012;75(2):332–8.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Herman JM, et al. Randomized phase III multi-institutional study of TNFerade biologic with fluorouracil and radiotherapy for locally advanced pancreatic cancer: final results. J Clin Oncol. 2013;31(7):886–94.

    Article  CAS  PubMed  Google Scholar 

  16. Nakai Y, Chang KJ. Endoscopic ultrasound-guided antitumor agents. Gastrointest Endosc Clin N Am. 2012;22(2):315–24. x.

    Article  PubMed  Google Scholar 

  17. Irisawa A, et al. Endoscopic ultrasound-guided fine-needle injection of immature dendritic cells into advanced pancreatic cancer refractory to gemcitabine: a pilot study. Pancreas. 2007;35(2):189–90.

    Article  PubMed  Google Scholar 

  18. Dougherty TJ, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90(12):889–905.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Agostinis P, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61(4):250–81.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Bown SG, et al. Photodynamic therapy for cancer of the pancreas. Gut. 2002;50(4):549–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Huggett MT, et al. Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br J Cancer. 2014;110(7):1698–704.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Yusuf TE, Matthes K, Brugge WR. EUS-guided photodynamic therapy with verteporfin for ablation of normal pancreatic tissue: a pilot study in a porcine model (with video). Gastrointest Endosc. 2008;67(6):957–61.

    Article  PubMed  Google Scholar 

  23. Hirooka Y, Itoh A, Kawashima H, Hara K, Nonogaki K, Kasugai T, Ohno E, Ishikawa T, Matsubara H, Ishigami M, Katano Y, Ohmiya N, Niwa Y, Yamamoto K, Kaneko T, Nieda M, Yokokawa K, Goto H. A combination therapy of gemcitabine with immunotherapy for patients with inoperable locally advanced pancreatic cancer. Pancreas. 2009;38(3):e69–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Chang M.D., F.A.S.G.E., F.A.C.G. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Samarasena, J.B., Chang, K.J. (2016). Recent Advances and Novel Treatments of Pancreatic Masses. In: Wagh, M., Draganov, P. (eds) Pancreatic Masses. Springer, Cham. https://doi.org/10.1007/978-3-319-19677-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19677-0_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19676-3

  • Online ISBN: 978-3-319-19677-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics