Skip to main content

Hereditary Paraganglioma and Pheochromocytoma

  • Chapter
Molecular Pathology in Clinical Practice

Abstract

Paragangliomas (PGLs) and pheochromocytomas (PCCs) are rare neuroendocrine tumors, which predominantly occur in the head and neck. They can be part of a syndrome, such as multiple endocrine neoplasia (MEN), neurofibromatosis (NF) type 1, and von Hippel-Lindau syndrome (VHL). Hereditary PGLs/PCCs are caused by molecular defects in the mitochondrial respiratory chain complex II, also known as the succinate dehydrogenase (SDH) complex, which contains protein subunits and assembly factors encoded by the nuclear genes, SDHA, SDHB, SDHC, SDHD, and SDHAF2. This chapter focuses on molecular mechanisms, available clinical molecular tests, interpretation of test results, and the clinical utility of molecular testing for hereditary PGL/PCC caused by mutations in the SDH genes. In general, diagnosis can be achieved by immunohistochemical studies of tumors, sequence analysis of SDH genes in germline cells and tumor tissues, and detection of large heterozygous deletions or duplications by microarray-based technology. Detailed clinical evaluation and family history are vital to appropriate prioritization of the diagnostic testing and for interpretation of test results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen H, Sippel RS, O'Dorisio MS, Vinik AI, Lloyd RV, Pacak K. The North American Neuroendocrine Tumor Society consensus guideline for the diagnosis and management of neuroendocrine tumors: pheochromocytoma, paraganglioma, and medullary thyroid cancer. Pancreas. 2010;39:775–83.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Lloyd RV. Adrenal cortical tumors, pheochromocytomas and paragangliomas. Mod Pathol. 2011;24:S58–65.

    Article  CAS  PubMed  Google Scholar 

  3. Ghezzi D, Goffrini P, Uziel G, Horvath R, Klopstock T, et al. SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat Genet. 2009;41:654–6.

    Article  CAS  PubMed  Google Scholar 

  4. Hao H-X, Khalimonchuk O, Schraders M, Dephoure N, Bayley J-P, et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science. 2009;325:1139–42.

    Article  CAS  PubMed  Google Scholar 

  5. Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000;287:848–51.

    Article  CAS  PubMed  Google Scholar 

  6. Astuti D, Latif F, Dallol A, Dahia PLM, Douglas F, et al. Gene mutations in the Succinate Dehydrogenase Subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet. 2001;69:49–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Burnichon N, Brière J-J, Libé R, Vescovo L, Rivière J, et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet. 2010;19:3011–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Niemann S, Muller U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet. 2000;26:268–70.

    Article  CAS  PubMed  Google Scholar 

  9. Amar L, Bertherat J, Baudin E, Ajzenberg C, Bressac-de Paillerets B, et al. Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol. 2005;23:8812–8.

    Article  CAS  PubMed  Google Scholar 

  10. Burnichon N, Vescovo L, Amar L, Libé R, de Reynies A, et al. Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum Mol Genet. 2011;20:3974–85.

    Article  CAS  PubMed  Google Scholar 

  11. Gimenez-Roqueplo A-P, Burnichon N, Amar L, Favier J, Jeunemaitre X, Plouin P-F. Recent advances in the genetics of phaeochromocytoma and functional paraganglioma. Clin Exp Pharmacol Physiol. 2008;35:376–9.

    Article  CAS  PubMed  Google Scholar 

  12. Bayley JP, Grimbergen AE, van Bunderen PA, van der Wielen M, Kunst HP, et al. The first Dutch SDHB founder deletion in paraganglioma-pheochromocytoma patients. BMC Med Genet. 2009;10:34.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Burnichon N, Rohmer V, Amar L, Herman P, Leboulleux S, et al. The succinate dehydrogenase genetic testing in a large prospective series of patients with paragangliomas. J Clin Endocrinol Metab. 2009;94:2817–27.

    Article  CAS  PubMed  Google Scholar 

  14. Mannelli M, Castellano M, Schiavi F, Filetti S, Giacchè M, et al. Clinically guided genetic screening in a large cohort of italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas. J Clin Endocrinol Metab. 2009;94:1541–7.

    Article  CAS  PubMed  Google Scholar 

  15. Briere JJ, Favier J, Benit P, El Ghouzzi V, Lorenzato A, et al. Mitochondrial succinate is instrumental for HIF1alpha nuclear translocation in SDHA-mutant fibroblasts under normoxic conditions. Hum Mol Genet. 2005;14:3263–9.

    Article  CAS  PubMed  Google Scholar 

  16. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7:77–85.

    Article  CAS  PubMed  Google Scholar 

  17. Dahia PL, Ross KN, Wright ME, Hayashida CY, Santagata S, et al. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet. 2005;1:72–80.

    Article  CAS  PubMed  Google Scholar 

  18. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40:294–309.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Raimundo N, Baysal BE, Shadel GS. Revisiting the TCA cycle: signaling to tumor formation. Trends Mol Med. 2011;17:641–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Selak MA, Duran RV, Gottlieb E. Redox stress is not essential for the pseudo-hypoxic phenotype of succinate dehydrogenase deficient cells. Biochim Biophys Acta. 2006;1757:567–72.

    Article  CAS  PubMed  Google Scholar 

  21. Gottlieb E, Tomlinson IP. Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer. 2005;5:857–66.

    Article  CAS  PubMed  Google Scholar 

  22. Kaelin Jr WG, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30:393–402.

    Article  CAS  PubMed  Google Scholar 

  23. Klimova T, Chandel NS. Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ. 2008;15:660–6.

    Article  CAS  PubMed  Google Scholar 

  24. Sudarshan S, Sourbier C, Kong HS, Block K, Valera Romero VA, et al. Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1alpha stabilization by glucose-dependent generation of reactive oxygen species. Mol Cell Biol. 2009;29:4080–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Piruat JI, Pintado CO, Ortega-Sáenz P, Roche M, López-Barneo J. The mitochondrial SDHD gene is required for early embryogenesis, and its partial deficiency results in persistent carotid body glomus cell activation with full responsiveness to hypoxia. Mol Cell Biol. 2004;24:10933–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Morris AAM, Farnsworth L, Ackrell BAC, Turnbull DM, Birch-Machin MA. The cDNA sequence of the flavoprotein subunit of human heart succinate dehydrogenase. Biochim Biophys Acta. 1994;1185:125–8.

    Article  CAS  PubMed  Google Scholar 

  27. Bourgeron T, Rustin P, Chretien D, Birch-Machin M, Bourgeois M, et al. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet. 1995;11:144–9.

    Article  CAS  PubMed  Google Scholar 

  28. Birch-Machin MA, Taylor RW, Cochran B, Ackrell BA, Turnbull DM. Late-onset optic atrophy, ataxia, and myopathy associated with a mutation of a complex II gene. Ann Neurol. 2000;48:330–5.

    Article  CAS  PubMed  Google Scholar 

  29. Horvath R, Abicht A, Holinski-Feder E, Laner A, Gempel K, et al. Leigh syndrome caused by mutations in the flavoprotein (Fp) subunit of succinate dehydrogenase (SDHA). J Neurol Neurosurg Psychiatry. 2006;77:74–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Pantaleo MA, Astolfi A, Indio V, Moore R, Thiessen N, et al. SDHA loss-of-function mutations in KIT-PDGFRA wild-type gastrointestinal stromal tumors identified by massively parallel sequencing. J Natl Cancer Inst. 2011;103:983–7.

    Article  CAS  PubMed  Google Scholar 

  31. Parfait B, Chretien D, Rotig A, Marsac C, Munnich A, Rustin P. Compound heterozygous mutations in the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome. Hum Genet. 2000;106:236–43.

    Article  CAS  PubMed  Google Scholar 

  32. Van Coster R, Seneca S, Smet J, Van Hecke R, Gerlo E, et al. Homozygous Gly555Glu mutation in the nuclear-encoded 70 kDa flavoprotein gene causes instability of the respiratory chain complex II. Am J Med Genet A. 2003;120A:13–8.

    Article  PubMed  Google Scholar 

  33. Korpershoek E, Favier J, Gaal J, Burnichon N, van Gessel B, et al. SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metab. 2011;96:E1472–6.

    Article  CAS  PubMed  Google Scholar 

  34. Neumann HP, Pawlu C, Peczkowska M, Bausch B, McWhinney SR, et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA. 2004;292:943–51.

    Article  CAS  PubMed  Google Scholar 

  35. Schiavi F, Milne RL, Anda E, Blay P, Castellano M, et al. Are we overestimating the penetrance of mutations in SDHB? Hum Mutat. 2010;31:761–2.

    Article  PubMed  Google Scholar 

  36. Blank A, Schmitt AM, Korpershoek E, van Nederveen F, Rudolph T, et al. SDHB loss predicts malignancy in pheochromocytomas/sympathetic paragangliomas, but not through hypoxia signalling. Endocr Relat Cancer. 2010;17:919–28.

    Article  PubMed  Google Scholar 

  37. Mannelli M, Ercolino T, Giache V, Simi L, Cirami C, Parenti G. Genetic screening for pheochromocytoma: should SDHC gene analysis be included? J Med Genet. 2007;44:586–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Peczkowska M, Cascon A, Prejbisz A, Kubaszek A, Cwikla BJ, et al. Extra-adrenal and adrenal pheochromocytomas associated with a germline SDHC mutation. Nat Clin Pract Endocrinol Metab. 2008;4:111–5.

    Article  CAS  PubMed  Google Scholar 

  39. Erlic Z, Rybicki L, Peczkowska M, Golcher H, Kann PH, et al. Clinical predictors and algorithm for the genetic diagnosis of pheochromocytoma patients. Clin Cancer Res. 2009;15:6378–85.

    Article  CAS  PubMed  Google Scholar 

  40. Hensen EF, Jordanova ES, van Minderhout IJ, Hogendoorn PC, Taschner PE, et al. Somatic loss of maternal chromosome 11 causes parent-of-origin-dependent inheritance in SDHD-linked paraganglioma and phaeochromocytoma families. Oncogene. 2004;23:4076–83.

    Article  CAS  PubMed  Google Scholar 

  41. Yeap PM, Tobias ES, Mavraki E, Fletcher A, Bradshaw N, et al. Molecular analysis of pheochromocytoma after maternal transmission of SDHD mutation elucidates mechanism of parent-of-origin effect. J Clin Endocrinol Metab. 2011;96:E2009–13.

    Article  CAS  PubMed  Google Scholar 

  42. Kunst HPM, Rutten MH, de Mönnink J-P, Hoefsloot LH, Timmers HJLM, et al. SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma. Clin Cancer Res. 2011;17:247–54.

    Article  CAS  PubMed  Google Scholar 

  43. Bayley JP, Kunst HP, Cascon A, Sampietro ML, Gaal J, et al. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol. 2010;11:366–72.

    Article  CAS  PubMed  Google Scholar 

  44. Piccini V, Rapizzi E, Bacca A, Di Trapani, Pulli R, et al. Head and neck paragangliomas: genetic spectrum and clinical variability in 79 consecutive patients. Endocr Relat Cancer. 2012;149–55.

    Google Scholar 

  45. van Nederveen FH, Gaal J, Favier J, Korpershoek E, Oldenburg RA, et al. An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol. 2009;10:764–71.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Wong L-JC, Dimmock D, Geraghty MT, Quan R, Lichter-Konecki U, et al. Utility of oligonucleotide array–based comparative genomic hybridization for detection of target gene deletions. Clin Chem. 2008;54:1141–8.

    Article  CAS  PubMed  Google Scholar 

  47. Benn DE, Gimenez-Roqueplo A-P, Reilly JR, Bertherat J, Burgess J, et al. Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes. J Clin Endocrinol Metab. 2006;91:827–36.

    Article  CAS  PubMed  Google Scholar 

  48. Ricketts C, Woodward ER, Killick P, Morris MR, Astuti D, et al. Germline SDHB mutations and familial renal cell carcinoma. J Natl Cancer Inst. 2008;100:1260–2.

    Article  CAS  PubMed  Google Scholar 

  49. King KS, Prodanov T, Kantorovich V, Fojo T, Hewitt JK, et al. Metastatic pheochromocytoma/paraganglioma related to primary tumor development in childhood or adolescence: significant link to SDHB mutations. J Clin Oncol. 2011;29:4137–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. van Duinen N, Steenvoorden D, Kema IP, Jansen JC, Vriends AH, et al. Increased urinary excretion of 3-methoxytyramine in patients with head and neck paragangliomas. J Clin Endocrinol Metab. 2010;95:209–14.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee-Jun C. Wong Ph.D., F.A.C.M.G. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, FY., Wong, LJ.C. (2016). Hereditary Paraganglioma and Pheochromocytoma. In: Leonard, D. (eds) Molecular Pathology in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-19674-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19674-9_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19673-2

  • Online ISBN: 978-3-319-19674-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics