Skip to main content
  • 3854 Accesses

Abstract

Neurodegenerative disorders are characterized by progressive neuronal deterioration resulting in cognitive or mental degeneration, dementias, muscle weakness, and/or movement disorders. Some disorders, such as Alzheimer disease or Parkinson disease exhibit sporadic as well as familial forms, with familial forms generally developing at an earlier age. Others, such as Huntington disease, are always inherited. Molecular genetics has elucidated the basis for a number of neurodegenerative disorders, and molecular testing may identify familial mutations, allowing presymptomatic or prenatal testing for family members.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alzheimer’s Association. 2014 Alzheimer’s disease facts and figures. Alzheimers Dement. 2014;10(2):e47–92.

    Article  Google Scholar 

  2. Schellenberg GD, Montine TJ. The genetics and neuropathology of Alzheimer’s disease. Acta Neuropathol. 2012;124(3):305–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Cruts M, Theuns J, Van Broeckhoven C. Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat. 2012;33(9):1340–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Chau D-M, Crump CJ, Villa JC, Scheinberg DA, Li Y-M. Familial Alzheimer disease presenilin-1 mutations alter the active site conformation of γ-secretase. J Biol Chem. 2012;287(21):17288–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Farlow J, Pankratz ND, Wojcieszek J, Foroud T. Parkinson disease overview. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong C-T, et al., editors. GeneReviews(®) [Internet]. Seattle, WA: University of Washington, Seattle; 1993. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1223/. Cited 16 Feb 2015.

  6. Poulopoulos M, Levy OA, Alcalay RN. The neuropathology of genetic Parkinson’s disease. Mov Disord. 2012;27(7):831–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Trinh J, Farrer M. Advances in the genetics of Parkinson disease. Nat Rev Neurol. 2013;9(8):445–54.

    Article  CAS  PubMed  Google Scholar 

  8. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276(5321):2045–7.

    Article  CAS  PubMed  Google Scholar 

  9. Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet. 1998;18(2):106–8.

    Article  PubMed  Google Scholar 

  10. Zarranz JJ, Alegre J, Gómez-Esteban JC, Lezcano E, Ros R, Ampuero I, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol. 2004;55(2):164–73.

    Article  CAS  PubMed  Google Scholar 

  11. Di Fonzo A, Dekker MCJ, Montagna P, Baruzzi A, Yonova EH, Correia Guedes L, et al. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology. 2009;72(3):240–5.

    Article  PubMed  Google Scholar 

  12. Lucking CB, Brice A. Semiquantitative PCR for the detection of exon rearrangements in the Parkin gene. In: Potter NT, editor. Neurogenetics: methods and protocols, vol. 217. Totowa, NJ: Humana Press; 2002. p. 13–26.

    Chapter  Google Scholar 

  13. Kinsley L, Siddique T. Amyotrophic lateral sclerosis overview. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong C-T, et al., editors. GeneReviews(®) [Internet]. Seattle, WA: University of Washington, Seattle; 1993. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1450/. Cited 16 Feb 2015.

  14. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130–3.

    Article  CAS  PubMed  Google Scholar 

  15. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Beck J, Poulter M, Hensman D, Rohrer JD, Mahoney CJ, Adamson G, et al. Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet. 2013;92(3):345–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Warby SC, Graham RK, Hayden MR. Huntington disease. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong C-T, et al., editors. GeneReviews(®) [Internet]. Seattle, WA: University of Washington, Seattle; 1993. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1305/. Cited 16 Feb 2015.

  19. Bean L, Bayrak-Toydemir P. Committee on behalf of the ALQA. American College of Medical Genetics and Genomics Standards and Guidelines for Clinical Genetics Laboratories, 2014 edition: technical standards and guidelines for Huntington disease. Genet Med. 2014;16(12), e2.

    Article  PubMed  Google Scholar 

  20. Andrew SE, Goldberg YP, Theilman J, et al. A CCG repeat polymorphism adjacent to the CAG repeat in the Huntington disease gene: implications for diagnostic accuracy and predictive testing. Hum Mol Genet. 1994;3:65–7.

    Article  CAS  PubMed  Google Scholar 

  21. Margolis RL, Stine OC, Callahan C, et al. Two novel single-base-pair-substitutions adjacent to the CAG repeat in the Huntington disease gene (IT15): implications for diagnostic testing. Am J Hum Genet. 1999;64:323–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Jama M, Millson A, Miller CE, Lyon E. Triplet repeat primed PCR simplifies testing for Huntington disease. J Mol Diagn. 2013;15(2):255–62.

    Article  CAS  PubMed  Google Scholar 

  23. Palomaki GE, Richards CS. Assessing the analytic validity of molecular testing for Huntington disease using data from an external proficiency testing survey. Genet Med. 2012;14(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  24. Saft C, Leavitt BR, Epplen JT. Clinical utility gene card for: Huntington’s disease. Eur J Hum Genet [Internet]. 2014;22(5). Available from: http://www.nature.com/ejhg/journal/v22/n5/full/ejhg2013206a.html. Cited 22 Feb 2015.

    Google Scholar 

  25. Bird TD. Hereditary ataxia overview. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong C-T, et al., editors. GeneReviews(®) [Internet]. Seattle, WA: University of Washington, Seattle; 1993. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1138/. Cited 16 Feb 2015.

  26. Potter NT, Nance MA. Ataxia Molecular Diagnostic Testing Group. Genetic testing for ataxia in North America. Mol Diagn. 2000;5(2):91–9.

    Article  CAS  PubMed  Google Scholar 

  27. Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9(9):885–94.

    Article  CAS  PubMed  Google Scholar 

  28. Bidichandani SI, Delatycki MB. Friedreich ataxia. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong C-T, et al., editors. GeneReviews(®) [Internet]. Seattle, WA: University of Washington, Seattle; 1993. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1281/. Cited 16 Feb 2015.

  29. Bird TD. Alzheimer disease overview. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong C-T, et al., editors. GeneReviews(®) [Internet]. Seattle, WA: University of Washington, Seattle; 1993. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1161/. Cited 16 Feb 2015.

  30. Gatti R. Ataxia-Telangiectasia. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong C-T, et al., editors. GeneReviews(®) [Internet]. Seattle, WA: University of Washington, Seattle; 1993. Available from: http://www.ncbi.nlm.nih.gov/books/NBK26468/. Cited 23 Feb 2015.

  31. Mao R, Aylsworth AS, Potter N, Wilson WG, Breningstall G, Wick MJ, et al. Childhood-onset ataxia: testing for large CAG-repeats in SCA2 and SCA7. Am J Med Genet. 2002;110(4):338–45.

    Article  PubMed  Google Scholar 

  32. Snow K, Mao R. Extreme expansion detection in spinocerebellar ataxia type 2 and type 7. In: Potter NT, editor. Neurogenetics: methods and protocols, vol. 217. Totowa, NJ: Humana Press; 2002. p. 41–50.

    Chapter  Google Scholar 

  33. Imbert G, Saudou F, Yvert G, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996;14:285–91.

    Article  CAS  PubMed  Google Scholar 

  34. Filla A, De Michelle G, Cavalcanti F, et al. The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am J Hum Genet. 1996;59:554–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Németh AH, Kwasniewska AC, Lise S, Parolin Schnekenberg R, Becker EBE, Bera KD, et al. Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain. 2013;136(Pt 10):3106–18.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Potter NT, Miller CA, Anderson IJ. Mutation detection in an equivocal case of Friedreich ataxia. Pediatr Neurol. 2000;22:413–5.

    Article  CAS  PubMed  Google Scholar 

  37. Paudel R, Hardy J, Revesz T, Holton JL, Houlden H. Review: genetics and neuropathology of primary pure dystonia. Neuropathol Appl Neurobiol. 2012;38(6):520–34.

    Article  CAS  PubMed  Google Scholar 

  38. Klein C, Marras C, Münchau A. Dystonia overview. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong C-T, et al., editors. GeneReviews(®) [Internet]. Seattle, WA: University of Washington, Seattle; 1993. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1155/. Cited 16 Feb 2015.

  39. McNaught KSP, Kapustin A, Jackson T, Jengelley T-A, JnoBaptiste R, Shashidharan P, et al. Brainstem pathology in DYT1 primary torsion dystonia. Ann Neurol. 2004;56(4):540–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Martinez-Lage M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martinez-Lage, M. (2016). Neurodegenerative Disorders. In: Leonard, D. (eds) Molecular Pathology in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-19674-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19674-9_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19673-2

  • Online ISBN: 978-3-319-19674-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics