Skip to main content

Hematologic Disorders: Hemochromatosis, Hemoglobinopathies, and Rh Incompatibility

  • Chapter
Molecular Pathology in Clinical Practice

Abstract

Hereditary hemochromatosis (HHC) is a disorder of iron metabolism and has been classified into six types having similar phenotypes but caused by mutations in different genes involved in the regulation of iron stores. Two allelic variants of the HFE gene, p.C282Y (c.845G>A) and p.H63D (c.187C>G), are significantly correlated with HHC, and most clinical studies have focused on these variants. Diagnosis of HHC is based on clinical, biochemical, histological, and molecular studies, specifically tests such as transferrin saturation, ferritin concentration, evaluation of iron stores by liver biopsy, and genotyping for p.C282Y and p.H63D mutations in HFE. Hemoglobinopathies are the most common single-gene diseases in the world. Approximately 5–7 % of the world’s population is a carrier for one of the hemoglobin disorders. Two copies of the alpha (α) globin genes are present (α1 and α2) on each chromosome 16. The beta and beta-like chains (ε, Gγ, Aγ, and δ) are clustered on chromosome 11. The hemoglobinopathies are commonly divided into two broad categories: structural variants, and thalassemias that are characterized by reduced rates of production of α or β chains. Sickle hemoglobin results from a single nucleotide substitution (GAG→GTG) that changes codon 6 of the β-globin gene from a glutamic acid to a valine (Glu6Val). Homozygosity for this mutation causes sickle cell disease (SD), an autosomal recessive disorder. SD is a major cause of morbidity and mortality in Africa and in populations with individuals of African descent. The α-thalassemias are most commonly caused by deletions while the β-thalassemias are most likely due to single nucleotide substitutions or frameshift mutations. Single nucleotide changes causing either structural variants or thalassemias can be easily diagnosed by targeted mutation analysis or by sequencing. Gap-PCR or multiplex ligation dependent probe amplification assays are the common methods to detect deletions. The Rh antigen system is clinically important because antibodies to Rh antigens are involved in hemolytic transfusion reactions, autoimmune hemolytic anemia, and hemolytic disease of the fetus and newborn. The Rh antigens are expressed on proteins encoded by two distinct but highly homologous genes, RHD and RHCE, on chromosome 1p34.3-36.1. The D antigen is expressed from RHD and the C/c and E/e antigens are expressed from RHCE. Rh incompatibility cases require both phenotypic and genotypic testing of parental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Imperatore G, Pinsky LE, Motulsky A, Reyes M, Bradley LA, Burke W. Hereditary hemochromatosis: perspectives of public health, medical genetics, and primary care. Genet Med. 2003;5:1–8.

    Article  CAS  PubMed  Google Scholar 

  2. Hanson EH, Imperatore G, Burke W. HFE gene and hereditary hemochromatosis: a HuGE review. Human Genome Epidemiology. Am J Epidemiol. 2001;154:193–206.

    Article  CAS  PubMed  Google Scholar 

  3. Weiss G. Genetic mechanisms and modifying factors in hereditary hemochromatosis. Nat Rev Gastroenterol Hepatol. 2010;7:50–8.

    Article  PubMed  Google Scholar 

  4. Kowdley KV, Bennet RL, Motulsky A. HFE-associated hereditary hemochromatosis. GeneReviews [serial online] 2012. Accessed 19 Apr, 12 A.D.

    Google Scholar 

  5. Zhou XY, Tomatsu S, Fleming RE, et al. HFE gene knockout produces mouse model of hereditary hemochromatosis. Proc Natl Acad Sci U S A. 1998;95:2492–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Feder JN, Gnirke A, Thomas W, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996;13:399–408.

    Article  CAS  PubMed  Google Scholar 

  7. Burke W, Imperatore G, McDonnell SM, Baron RC, Khoury MJ. Contribution of different HFE genotypes to iron overload disease: a pooled analysis. Genet Med. 2000;2:271–7.

    Article  CAS  PubMed  Google Scholar 

  8. Allen KJ, Gurrin LC, Constantine CC, et al. Iron-overload-related disease in HFE hereditary hemochromatosis. N Engl J Med. 2008;358:221–30.

    Article  CAS  PubMed  Google Scholar 

  9. Somerville MJ, Sprysak KA, Hicks M, Elyas BG, Vicen-Wyhony L. An HFE intronic variant promotes misdiagnosis of hereditary hemochromatosis. Am J Hum Genet. 1999;65:924–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Beutler E, Gelbart T. A common intron 3 mutation (IVS3-48c→g) leads to misdiagnosis of the c.845G→A (C282Y) HFE gene mutation. Blood Cells Mol Dis. 2000;26:229–33.

    Article  CAS  PubMed  Google Scholar 

  11. Pointon JJ, Merryweather-Clarke AT, Carella M, Robson KJ. Detection of C282Y and H63D in the HFE gene. Genet Test. 2000;4:115–20.

    Article  CAS  PubMed  Google Scholar 

  12. Lyon E, Frank EL. Hereditary hemochromatosis since discovery of the HFE gene. Clin Chem. 2001;47:1147–56.

    CAS  PubMed  Google Scholar 

  13. Weatherall DJ. The thalassemias: disorders of globin synthesis. In: Kaushansky K, Lichtman MA, Beutler E, Kipps TJ, Seligsohn U, Prchal JT, editors. Williams hematology. 8th ed. New York: McGraw-Hill; 2010. p. 675–707.

    Google Scholar 

  14. Higgs DR. Alpha thalassemia. In: Steinberg MH, Forget BG, Higgs DR, Weatherall DJ, editors. Disorders of hemoglobin: genetics, pathophysiology, and clinical management. 2nd ed. New York: Cambridge University Press; 2009. p. 241–323.

    Google Scholar 

  15. Cao A, Galanello R. Beta-thalassemia. GeneReviews [serial online] 2010.

    Google Scholar 

  16. Hatcher SL, Trang QT, Robb KM, Teplitz RL, Carlson JR. Prenatal diagnosis by enzymatic amplification and restriction endonuclease digestion for detection of haemoglobins A, S and C. Mol Cell Probes. 1992;6:343–8.

    Article  CAS  PubMed  Google Scholar 

  17. Hermann MG. Genotyping b-globin mutations (HbS, HbC, HbE) by muliplexing probe color and melting temperature. In: Meuer S, Wittwer CT, Nakagawara K, editors. Rapid cycle real-time PCR: methods and applications. Heidelberg: Springer; 2001. p. 119–25.

    Chapter  Google Scholar 

  18. Tan AS, Quah TC, Low PS, Chong SS. A rapid and reliable 7-deletion multiplex polymerase chain reaction assay for alpha-thalassemia. Blood. 2001;98:250–1.

    Article  CAS  PubMed  Google Scholar 

  19. Tuzmen S, Schechter AN. Genetic diseases of hemoglobin: diagnostic methods for elucidating beta-thalassemia mutations. Blood Rev. 2001;15:19–29.

    Article  CAS  PubMed  Google Scholar 

  20. Moreno I, Bolufer P, Perez ML, Barragan E, Sanz MA. Rapid detection of the major Mediterranean beta-thalassaemia mutations by real-time polymerase chain reaction using fluorophore-labelled hybridization probes. Br J Haematol. 2002;119:554–7.

    Article  CAS  PubMed  Google Scholar 

  21. Bowman JM. Immune hemolytic disease. In: Nathan DG, Oski FA, editors. Hematology of infancy and childhood. 5th ed. Philadelphia: W.B. Saunders; 1998. p. 53–78.

    Google Scholar 

  22. Avent ND, Reid ME. The Rh blood group system: a review. Blood. 2000;95:375–87.

    CAS  PubMed  Google Scholar 

  23. Wagner FF, Flegel WA. RHCE represents the ancestral RH position, while RHD is the duplicated gene. Blood. 2002;99:2272–3.

    Article  CAS  PubMed  Google Scholar 

  24. Reid ME, Lomas-Francis C. The blood group antigen facts book. 2nd ed. London: Academic; 2004.

    Google Scholar 

  25. Singleton BK, Green CA, Avent ND, et al. The presence of an RHD pseudogene containing a 37 base pair duplication and a nonsense mutation in Africans with the Rh D-negative blood group phenotype. Blood. 2000;95:12–8.

    CAS  PubMed  Google Scholar 

  26. van der Schoot CE, Tax GH, Rijnders RJ, De Haas M, Christiaens GC. Prenatal typing of Rh and Kell blood group system antigens: the edge of a watershed. Transfus Med Rev. 2003;17:31–44.

    Article  PubMed  Google Scholar 

  27. Moise Jr KJ. Management of rhesus alloimmunization in pregnancy. Obstet Gynecol. 2008;112:164–76.

    Article  PubMed  Google Scholar 

  28. Oepkes D, Seaward PG, Vandenbussche FP, et al. Doppler ultrasonography versus amniocentesis to predict fetal anemia. N Engl J Med. 2006;355:156–64.

    Article  CAS  PubMed  Google Scholar 

  29. Reid ME, Rios M, Powell VI, Charles-Pierre D, Malavade V. DNA from blood samples can be used to genotype patients who have recently received a transfusion. Transfusion. 2000;40:48–53.

    Article  CAS  PubMed  Google Scholar 

  30. Wagner FF, Frohmajer A, Flegel WA. RHD positive haplotypes in D negative Europeans. BMC Genet. 2001;2:10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Finning KM, Martin PG, Soothill PW, Avent ND. Prediction of fetal D status from maternal plasma: introduction of a new noninvasive fetal RHD genotyping service. Transfusion. 2002;42:1079–85.

    Article  CAS  PubMed  Google Scholar 

  32. Denomme GA, Johnson ST, Pietz BC. Mass-scale red cell genotyping of blood donors. Transfus Apher Sci. 2011;44:93–9.

    Article  PubMed  Google Scholar 

  33. Pirelli KJ, Pietz BC, Johnson ST, Pinder HL, Bellissimo DB. Molecular determination of RHD zygosity: predicting risk of hemolytic disease of the fetus and newborn related to anti-D. Prenat Diagn. 2010;30:1207–12.

    Article  CAS  PubMed  Google Scholar 

  34. Bombard AT, Akolekar R, Farkas DH, et al. Fetal RHD genotype detection from circulating cell-free fetal DNA in maternal plasma in non-sensitized RhD negative women. Prenat Diagn. 2011;31:802–8.

    Article  CAS  PubMed  Google Scholar 

  35. Tynan JA, Angkachatchai V, Ehrich M, Paladino T, van den Boom D, Oeth P. Multiplexed analysis of circulating cell-free fetal nucleic acids for noninvasive prenatal diagnostic RHD testing. Am J Obstet Gynecol. 2011;204:251–6.

    Article  CAS  PubMed  Google Scholar 

  36. Nygren AO, Dean J, Jensen TJ, et al. Quantification of fetal DNA by use of methylation-based DNA discrimination. Clin Chem. 2010;56:1627–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel B. Bellissimo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bellissimo, D.B., Agarwal, A. (2016). Hematologic Disorders: Hemochromatosis, Hemoglobinopathies, and Rh Incompatibility. In: Leonard, D. (eds) Molecular Pathology in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-19674-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19674-9_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19673-2

  • Online ISBN: 978-3-319-19674-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics