Skip to main content

Abstract

Sepsis represents the body’s response to an infectious insult. It is characterized by the dysregulation of the inflammatory response and of the coagulation homeostasis. Depending on the host’s predisposition and co-morbidities, as well as on the nature and intensity of the insult, sepsis may progress to severe sepsis, which may be associated with circulatory shock, multiple organ failure, and death.

Severe sepsis has become one of the most important diagnoses in intensive care units (ICUs) worldwide being the leading cause of death in hospitalized critically ill patients in the United States. An international initiative, known as “Sepsis Surviving Campaign” has been launched in order to increase its awareness and improve care. The importance of early antibiotics and early resuscitation of the cardiovascular system are now recognized as paramount. Despite the observed mortality reduction in the last years, there is a lack of new specific therapies and the incidence of severe sepsis is expected to continuously increase outgrowing the increase expected in the US population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10.

    Article  CAS  PubMed  Google Scholar 

  2. Linde-zwirble WT, Angus DC. Severe sepsis epidemiology: sampling, selection, and society. Crit Care. 2004;8:222–6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dombrovskiy VY, Martin AA, Sunderram J, Paz HL. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med. 2007;35:1414–5.

    Article  Google Scholar 

  4. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–54.

    Article  PubMed  Google Scholar 

  5. Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000–2012. JAMA. 2014;311:1308–16.

    Article  CAS  PubMed  Google Scholar 

  6. Angus DC, Kelley MA, Schmitz RJ, White A, Popovich Jr J, Committee on Manpower for Pulmonary and Critical Care Societies (COMPACCS). Caring for the critically ill. Current and projected workforce requirements for care of the critically ill and patients with pulmonary disease: can we meet the requirements of an aging population? JAMA. 2000;284:2762–70.

    Article  CAS  PubMed  Google Scholar 

  7. American Cancer Society. Cancer statistics (online). Accessed 3/29/01.

    Google Scholar 

  8. American Heart Association. 2001 Heart and stroke statistical update. Dallas, TX: American Heart Association; 2000.

    Google Scholar 

  9. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992;101:1644–55.

    Article  CAS  PubMed  Google Scholar 

  10. Vincent JL. Dear SIRS, I‘m sorry to say that I don't like you…. Crit Care Med. 1997;25:372–4.

    Article  CAS  PubMed  Google Scholar 

  11. Marshall JC. SIRS and MODS: what is their relevance to the science and practice of intensive care? Shock. 2000;14:586–9.

    Article  CAS  PubMed  Google Scholar 

  12. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. International sepsis definitions conference. Crit Care Med. 2003;31:1250–56.

    Article  PubMed  Google Scholar 

  13. Marshall JC, Cook DJ, Cristou NV, Bernard GR, Sprung CL, Sibbald WJ. Multiple organ dysfunction score: a reliable predictor of complex clinical outcome. Crit Care Med. 1995;23:1638–52.

    Article  CAS  PubMed  Google Scholar 

  14. Ferreira FL, Bota DP, Bross A, Mélot C, Vincent JL. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 2001;286:1754–8.

    Google Scholar 

  15. Hernandez G, Castro R, Romero C, del a Hoz C, Angulo D, Aranguiz I, et al. Persistent sepsis-induced hypotension without hyperlactatemia: Is it really septic shock? J Crit Care. 2011;26:435.e9–14.

    Google Scholar 

  16. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–815.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Levy M, Bernard GR, Ely EW, Aird W. Latebreaker session. Society of critical care medicine annual meeting. San Diego, CA, 30 Jan 2002.

    Google Scholar 

  18. Agnese DM, Calvano JE, Hahm SJ, Coyle SM, Corbett SA, Calvano SE, et al. Human toll-like receptor form mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis. 2002;186:1522–5.

    Article  CAS  PubMed  Google Scholar 

  19. Lorenz E, Mira JP, Frees KL, Schwartz DA. Relevance of mutations in the TLR4 receptors in patients with gram-negative septic shock. Arch Intern Med. 2002;162:1028–32.

    Article  CAS  PubMed  Google Scholar 

  20. Mira JP, Cariou A, Grall F, Delclaux C, Losser MR, Heshmati F, Cheval C, et al. Association of TNF2, a TNF promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. JAMA.1999;282:561–8.

    Google Scholar 

  21. Thompson CM, Holden TD, Rona G, Laxmanan B, Black RA, O‘ Keefe GE, et al. Toll-like receptor 1 polymorphisms and associated outcomes in sepsis after traumatic injury: a candidate gene association study. Ann Surg 2014;259:179–85.

    Google Scholar 

  22. Gogos C, Kotsaki A, Pelekanou A, Giannikopoulos G, Vaki I, Maravitsa P, et al. Early alterations of the innate and adaptive immune statuses in sepsis according to the type of underlying infection. Crit Care. 2010;14:R96.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Taniguchi T, Koido Y, Aiboshi J, Yamashita T, Suzaki S, Kurokawa A. Change in the ratio of interleukin-6 to interleukin-10 predicts a poor outcome in patients with systemic inflammatory response syndrome. Crit Care Med. 1999;27:1262–4.

    Article  CAS  PubMed  Google Scholar 

  24. Takala A, Jousela I, Olkkola KT, Jansson SE, Leirisalo-Repo M, Takkunen O, et al. Systemic inflammatory response syndrome without systemic inflammation in acutely ill patients admitted to hospital in a medical emergency. Clin Sci (Lond). 1999;96:287–95.

    Article  CAS  Google Scholar 

  25. Proulx F, Fayon M, Farrell CA, Lacroix J, Gauthier M. Epidemiology of sepsis and multiple organ dysfunction syndrome in children. Chest. 1996;109:1033–7.

    Article  CAS  PubMed  Google Scholar 

  26. Sablotzki A, Borgermann J, Baulig W, Friedrich I, Spillner J, Silber RE, et al. Lipopolysaccharide binding protein (LBP) and markers of acute-phase response in patients with multiple organ dysfunction syndrome (MODS) following open heart surgery. Thorac Cardiovasc Surg. 2001;49:273–8.

    Article  CAS  PubMed  Google Scholar 

  27. Harbarth S, Holeckova K, Froidevaux C, Pittet D, Ricou B, Grau GE, et al. Diagnostic value of procalcitonin, interleukin-6 and interleukin-8 in critically ill patients admitted with suspected sepsis. Am J Respir Crit Care Med. 2001;164:396–402.

    Article  CAS  PubMed  Google Scholar 

  28. Duflo F, Debon R, Monneret G, Bienvenu J, Chassard D, Allaouchiche B, et al. Alveolar and serum procalcitonin: diagnostic and prognostic value in ventilator-associated pneumonia. Anesthesiology. 2002;9:74–9.

    Article  Google Scholar 

  29. Fisher Jr CJ, Agosti JM, Opal SM, Lowry SF, Balk RA, Sadoff JC, et al. Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. N Engl J Med. 1996;334:1697–702.

    Article  CAS  PubMed  Google Scholar 

  30. Abraham E, Wunderink R, Silverman H, Perl TM, Nasraway S, Levy H, et al. Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome: a randomized, controlled, double-blind, multicenter clinical trial. JAMA. 1995;273:934–41.

    Article  CAS  PubMed  Google Scholar 

  31. Fisher Jr CJ, Slotman GJ, Opal SM, Pribble JP, Bone RC, Emmanuel G, et al. Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: a randomized, open-label, placebo-controlled multicenter trial. Crit Care Med. 1994;22:12–21.

    Article  PubMed  Google Scholar 

  32. Cobb JP. Nitric oxide synthase inhibition as therapy for sepsis: a decade of promise. Surg Infect (Larchmt). 2001;2:93–100.

    Article  CAS  Google Scholar 

  33. Grover R, Zaccardelli D, Colice G, Guntupalli K, Watson D, Vincent JL. An open-label dose escalation study of the nitric oxide synthase inhibitor, N(G)-methyl-L-arginine hydrochloride (546C88), in patients with septic shock. Glaxo Wellcome International Septic Shock Study Group. Crit Care Med. 1999;27:913–22.

    Article  CAS  PubMed  Google Scholar 

  34. Sadikot RT, Christman JW, Blackwell TS. Molecular targets for modulating lung inflammation and injury. Curr Drug Targets. 2004;5:581–8.

    Article  CAS  PubMed  Google Scholar 

  35. Yang H, Ochani M, Li J, Qiang X, Tanovic M, Harris HE, et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A. 2004;101:296–301.

    Article  CAS  PubMed  Google Scholar 

  36. Cinel I, Dellinger RP. Advances in pathogenesis and management of sepsis. Curr Opin Infect Dis. 2007;20:345–52.

    Article  PubMed  Google Scholar 

  37. Lanken PN. The intensive care manual. Philadelphia, PA: WB Saunders; 2001. p. 95.

    Google Scholar 

  38. Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001;345:588–95.

    Article  CAS  PubMed  Google Scholar 

  39. Trzeciak S, Dellinger RP, Parrillo JE, Guglielmi M, Bajaj J, Abate NL, et al. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med. 2007;49:88–98. 98.e1-2.

    Article  PubMed  Google Scholar 

  40. De Backer D, Durand A. Monitoring the microcirculation in critically ill patients. Best Pract Res Clin Anaesthesiol. 2014;28:441–51.

    Article  PubMed  Google Scholar 

  41. Rosenberg RD, Aird WC. Vascular-bed-specific homeostasis and hypercoagulable states. N Engl J Med. 1999;340:1555–64.

    Article  CAS  PubMed  Google Scholar 

  42. Tomashefski Jr JF. Pulmonary pathology of the adult respiratory distress syndrome. Clin Chest Med. 1990;11:593–619.

    PubMed  Google Scholar 

  43. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498–505.

    Article  CAS  PubMed  Google Scholar 

  44. Singel DJ, Stamler JS. Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin. Annu Rev Physiol. 2005;67:99–145.

    Article  CAS  PubMed  Google Scholar 

  45. Morin MJ, Unno N, Hodin RA, Fink MP. Differential expression of inducible nitric oxide synthase messenger RNA along the longitudinal and crypt-villus axes of the intestine in endotoxemic rats. Crit Care Med. 1998;26:1258–64.

    Article  CAS  PubMed  Google Scholar 

  46. Revelly JP, Ayuse T, Brienza N, Fessler HE, Robotham JL. Endotoxic shock alters distribution of blood flow within the intestinal wall. Crit Care Med. 1996;24:1345–51.

    Article  CAS  PubMed  Google Scholar 

  47. Vallet B. Endothelial cell dysfunction and abnormal tissue perfusion. Crit Care Med. 2002;30 suppl 5:S229–34.

    Article  PubMed  Google Scholar 

  48. Lidington D, Tyml K, Ouellette Y. Lipopolysaccharide-induced reductions in cellular coupling correlate with tyrosine phosphorylation of connexin. J Cell Physiol. 2002;193:373–79.

    Article  CAS  PubMed  Google Scholar 

  49. Piagnerelli M, Boudjeltia KZ, Vanhaeverbeek M, Vincent JL. Red blood cell rheology in sepsis. Intensive Care Med. 2003;29:1052–61.

    Article  CAS  PubMed  Google Scholar 

  50. Cerwinka WH, Cooper D, Krieglstein CF, Ross CR, McCord JM, Granger DN. Superoxide mediates endotoxin-induced platelet–endothelial cell adhesion in intestinal venules. Am J Physiol Heart Circ Physiol. 2003;284:H535–41.

    Article  CAS  PubMed  Google Scholar 

  51. Martins PS, Kallas EG, Neto MC, Dalboni MA, Blecher S, Salomao R. Upregulation of reactive oxygen species generation and phagocytosis, and increased apoptosis in human neutrophils during severe sepsis and septic shock. Shock. 2003;20:208–12.

    Article  CAS  PubMed  Google Scholar 

  52. Victor VM, Rocha M, De la Fuente M. Immune cells: free radicals and antioxidants in sepsis. Int Immunopharmacol. 2004;4:327–47.

    Article  CAS  PubMed  Google Scholar 

  53. Fink MP. Intestinal epithelial hyperpermeability: update on the pathogenesis of gut mucosal barrier dysfunction in critical illness. Curr Opin Crit Care. 2003;9:143–51.

    Article  PubMed  Google Scholar 

  54. Singer M. Mitochondrial function in sepsis: acute phase versus multiple organ failure. Crit Care Med. 2007;35(Suppl):441–8.

    Article  CAS  Google Scholar 

  55. Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest. 2002;122:262–8.

    Article  PubMed  Google Scholar 

  56. Luna CM, Vujacich P, Niederman MS, Vay C, Gherardi C, Matera J, et al. Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest. 1997;111:676.

    Article  CAS  PubMed  Google Scholar 

  57. Chastre J, Wolff M, Fagon JY, Chevret S, Thomas F, Wermert D, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA. 2003;19(290):2588–98.

    Article  Google Scholar 

  58. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock. Crit Care Med. 2012;2013:41580–637.

    Google Scholar 

  59. Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370:1583–93.

    Article  CAS  PubMed  Google Scholar 

  60. Van den Berghe G, de Zegher F. Anterior pituitary function during critical illness and dopamine treatment. Crit Care Med. 1996;24:1580–90.

    Article  PubMed  Google Scholar 

  61. Ract C, Vigue B. Comparison of the cerebral effects of dopamine and norepinephrine in severely head-injured patients. Intensive Care Med. 2001;27:101–6.

    Article  CAS  PubMed  Google Scholar 

  62. Marik PE, Mohedin M. The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA. 1994;272:1354–57.

    Article  CAS  PubMed  Google Scholar 

  63. LeDoux D, Astiz ME, Carpati CM, Rackow EC. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med. 2000;28:2729–32.

    Article  CAS  PubMed  Google Scholar 

  64. Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Lancet. 2000;356:2139–43.

    Article  CAS  PubMed  Google Scholar 

  65. Martin C, Papazian L, Perrin G, Saux P, Gouin F. Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest. 1993;103:1826–31.

    Article  CAS  PubMed  Google Scholar 

  66. Martin C, Viviand X, Leone M, Thirion X, et al. Effect of norepinephrine on the outcome of septic shock. Crit Care Med. 2000;28:2758–65.

    Article  CAS  PubMed  Google Scholar 

  67. De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362:779–89.

    Article  PubMed  Google Scholar 

  68. Ruokonen E, Takala J, Kari A, Saxén H, Mertsola J, Hansen EJ. Regional blood flow and oxygen transport in septic shock. Crit Care Med. 1993;21:1296–303.

    Article  CAS  PubMed  Google Scholar 

  69. Patel GP, Grahe JS, Sperry M, Singla S, Elpern E, Lateef O, et al. Efficacy and safety of dopamine versus norepinephrine in the management of septic shock. Shock. 2010;33:375–80.

    Article  CAS  PubMed  Google Scholar 

  70. De Backer D, Aldecoa C, Njimi H, Vincent J. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis. Crit Care Med. 2012;40:725–30.

    Article  PubMed  CAS  Google Scholar 

  71. Annane D, Vignon P, Renault A, Bollaert PE, Charpentier C, Martin C, et al. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial. Lancet. 2007;370:676–84.

    Article  CAS  PubMed  Google Scholar 

  72. Levy B, Bollaert PE, Charpentier C, Nace L, Audibert G, Bauer P, et al. Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: a prospective, randomized study. Intensive Care Med. 1997;23:282–7.

    Article  CAS  PubMed  Google Scholar 

  73. Seguin P, Bellissant E, Le Tulzo Y, Laviolle B, Lessard Y, Thomas R, et al. Effects of epinephrine compared with the combination of dobutamine and norepinephrine on gastric perfusion in septic shock. Clin Pharmacol Ther. 2002;71:381–8.

    Article  CAS  PubMed  Google Scholar 

  74. Myburgh JA, Higgins A, Jovanovska A, Lipman J, Ramakrishnan N, Santamaria J, et al. A comparison of epinephrine and norepinephrine in critically ill patients. Intensive Care Med. 2008;34:2226–34.

    Article  PubMed  Google Scholar 

  75. Landry DW, Levin HR, Gallant EM, Ashton Jr RC, Seo S, D’Alessandro D, et al. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997;95:1122–5.

    Article  CAS  PubMed  Google Scholar 

  76. Sharshar T, Blanchard A, Paillard M, Raphael JC, Gajdos P, Annane D. Circulating vasopressin levels in septic shock. Crit Care Med. 2003;31:1752–8.

    Article  CAS  PubMed  Google Scholar 

  77. Patel BM, Chittock DR, Russell JA, Walley KR. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology. 2002;96:576–82.

    Article  CAS  PubMed  Google Scholar 

  78. Dünser MW, Mayr AJ, Ulmer H, Knotzer H, Sumann G, Pajk W, et al. Arginine vasopressin in advanced vasodilatory shock: a prospective, randomized, controlled study. Circulation. 2003;107:2313–9.

    Article  PubMed  CAS  Google Scholar 

  79. Holmes CL, Walley KR, Chittock DR, Lehman T, Russell JA. The effects of vasopressin on hemodynamics and renal function in severe septic shock: a case series. Intensive Care Med. 2001;27:1416–21.

    Article  CAS  PubMed  Google Scholar 

  80. Lauzier F, Levy B, Lamarre P, Lesur O. Vasopressin or norepinephrine in early hyperdynamic septic shock: a randomized clinical trial. Intensive Care Med. 2006;32:1782–9.

    Article  CAS  PubMed  Google Scholar 

  81. Russell JA, Walley KR, Singer J, Gordon AC, Hébert PC, Cooper DJ, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–87.

    Article  CAS  PubMed  Google Scholar 

  82. Dünser MW, Mayr AJ, Tura A, Pajk W, Barbara F, Knotzer H, et al. Ischemic skin lesions as a complication of continuous vasopressin infusion in catecholamine-resistant vasodilatory shock: incidence and risk factors. Crit Care Med. 2003;31:1394–8.

    Article  PubMed  CAS  Google Scholar 

  83. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.

    Article  CAS  PubMed  Google Scholar 

  84. ProCESS Investigators, Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–93.

    Article  CAS  Google Scholar 

  85. ARISE Investigators, ANZICS Clinical Trials Group, Peake SL, Delaney A, Bailey M, Bellomo R. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–506.

    Article  CAS  Google Scholar 

  86. Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet. 2005;366:472–77.

    Article  PubMed  Google Scholar 

  87. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wheeler AP, Bernard GR, Thompson BT, Schoenfeld D, Wiedemann HP, et al. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med. 2006;354:2213–24.

    Article  Google Scholar 

  88. Goedje O, Hoeke K, Lichtwarck-Aschoff M, Faltchauser A, Lamm P, Reichart B. Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med. 1999;27:2407–412.

    Article  CAS  PubMed  Google Scholar 

  89. Della Rocca G, Costa MG, Coccia C, Pompei L, Di Marco P, Vilardi V, et al. Cardiac output monitoring: aortic transpulmonary thermodilution and pulse contour analysis agree with standard thermodilution methods in patients undergoing lung transplantation. Can J Anaesth. 2003;50:707–11.

    Article  PubMed  Google Scholar 

  90. Pittman J, Bar-Yosef S, SumPing J, Sherwood M, Mark J. Continuous cardiac output monitoring with pulse contour analysis: a comparison with lithium indicator dilution cardiac output measurement. Crit Care Med. 2005;33:2015–21.

    Article  PubMed  Google Scholar 

  91. Reuter DA, Kirchner A, Felbinger TW, Weis FC, Kilger E, Lamm P, et al. Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med. 2003;31:1399–404.

    Article  PubMed  Google Scholar 

  92. Marx G, Cope T, McCrossan L, Swaraj S, Cowan C, Mostafa SM, et al. Assessing fluid responsiveness by stroke volume variation in mechanically ventilated patients with severe sepsis. Eur J Anaesthesiol. 2004;21:132–8.

    Article  CAS  PubMed  Google Scholar 

  93. Vallée F, Fourcade O, De Soyres O, Angles O, Sanchez-Verlaan P, Pillard F, et al. Stroke output variations calculated by esophageal Doppler is a reliable predictor of fluid response. Intensive Care Med. 2005;31:1388–93.

    Article  PubMed  Google Scholar 

  94. Cholley BP, Vieillard-Baron A, Mebazaa A. Echocardiography in the ICU: time for widespread use! Intensive Care Med. 2006;32:9–10.

    Article  PubMed  Google Scholar 

  95. Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A, et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;30:1734–9.

    PubMed  Google Scholar 

  96. Lamia B, Ochagavia A, Monnet X, Chemla D, Richard C, Teboul JL. Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med. 2007;33:1125–32.

    Article  PubMed  Google Scholar 

  97. Ranjit S, Aram G, Kissoon N, Ali MK, Natraj R, Shresti S, et al. Multimodal monitoring for hemodynamic categorization and management of pediatric septic shock: a pilot observational study. Pediatr Crit Care Med. 2014;15:e17–26.

    Article  PubMed  Google Scholar 

  98. Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettilä V. Hemodynamic variables related to outcome in septic shock. Intensive Care Med. 2005;31:1066–71.

    Article  PubMed  Google Scholar 

  99. Vallee F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, et al. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;34:2218–25.

    Article  PubMed  Google Scholar 

  100. Ospina-Tascon G, Bautista-Rincon DF, Umana M, Tafur JD, Gutiérrez A, García AF, et al. Persistently high venous-to-arterial carbon dioxide differences during resuscitation are associated with poor outcomes in septic shock. Crit Care. 2013;17:R294.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Choi PT, Yip G, Quinonez LG, Cook DJ. Crystalloids vs colloids in fluid resuscitation: a systematic review. Crit Care Med. 1999;27:200–10.

    Article  CAS  PubMed  Google Scholar 

  102. Cook D, Guyatt G. Colloid use for fluid resuscitation: evidence and spin. Ann Intern Med. 2001;135:205–8.

    Article  CAS  PubMed  Google Scholar 

  103. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358:125–39.

    Article  CAS  PubMed  Google Scholar 

  104. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Åneman A, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367:124–34.

    Article  CAS  PubMed  Google Scholar 

  105. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367:1901–11.

    Article  CAS  PubMed  Google Scholar 

  106. Guidet B, Martinet O, Boulain T, Philippart F, Poussel JF, Maizel J, et al. Assessment of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 vs. 0.9% NaCl fluid replacement inpatients with severe sepsis: The CRYSTMAS study. Crit Care. 2012;16:R94.

    Article  PubMed  PubMed Central  Google Scholar 

  107. McIntyre LA, Ferguson D, Cook DJ, Rankin N, Dhingra V, Granton J, et al. Fluid resuscitation in the management of early septic shock (FINESS): a randomized controlled feasibility trial. Can J Anaesth. 2008;55:819–26.

    Article  PubMed  Google Scholar 

  108. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–56.

    Article  CAS  PubMed  Google Scholar 

  109. Delaney AP, Dan A, McCaffrey J, Finfer S. The role of albumin as a resuscitation fluid for patients with sepsis: a systematic review and meta analysis. Crit Care Med. 2011;39:386–91.

    Article  CAS  PubMed  Google Scholar 

  110. Charpentier J, Mira JP, Group ES. Efficacy and tolerance of hyperoncotic albumin administration in septic patients: the EARSS study. Intensive Care Med. 2011;37 suppl 1:S115.

    Google Scholar 

  111. Annane D, Siami S, Jaber S, Martin C, Elatrous S, Declère AD, et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA. 2013;6(310):1809–17.

    Article  CAS  Google Scholar 

  112. Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370:1412–21.

    Article  CAS  PubMed  Google Scholar 

  113. Patel A, Laffan MA, Waheed U, Brett SJ. Randomized trials of human albumin for adults with sepsis: systematic review and meta-analysis with trial sequential analysis of all-cause mortality. BMJ. 2014;349g4561.

    Google Scholar 

  114. Hebert PC, Well G, Blajchman MA, Marshall J, Martin C, Pagliarello G, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. N Engl J Med. 1999;340:409–17.

    Article  CAS  PubMed  Google Scholar 

  115. Marik PE, Sibbald WJ. Effect of stored-blood transfusion on oxygen delivery in patients with sepsis. JAMA. 1993;269:3024–29.

    Article  CAS  PubMed  Google Scholar 

  116. Fernandes Jr CJ, Akamine N, De Marco FV, De Souza JA, Lagudis S, Knobel E. Red blood cell transfusion does not increase oxygen consumption in critically ill septic patients. Crit Care. 2001;5:362–7.

    Article  PubMed  PubMed Central  Google Scholar 

  117. La H, Vincent JL, Galas FR, Nakamura RE, Silva CM, Santos MH, et al. Transfusion requirements after cardiac surgery: the TRACS randomized controlled trial. JAMA. 2010;304:1559–67.

    Article  Google Scholar 

  118. Holst LB, Haase N, Wetterslev J, Wernerman J, Guttormsen AB, Karlsson S, et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med. 2014;371:1381–91.

    Article  PubMed  CAS  Google Scholar 

  119. Finfer S, Chittock DR, Su SY, Blair D, Foster D, The NICE-SUGAR Study Investigators. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–97.

    Article  PubMed  Google Scholar 

  120. Palevsky PM, Zhang JH, O'Connor TZ, Chertow GM, Crowley ST, VA/NIH Acute Renal Failure Trial Network, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359:7–20.

    Article  CAS  PubMed  Google Scholar 

  121. Annane D, Sebille V, Charpentier C, Bollaert PE, François B, Korach JM, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288:862–71.

    Article  CAS  PubMed  Google Scholar 

  122. Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358:111–24.

    Article  CAS  PubMed  Google Scholar 

  123. Sligl WI, Milner Jr DA, Sundar S, Mphatswe W, Majumdar SR, et al. Safety and efficacy of corticosteroids for the treatment of septic shock: a systematic review and meta-analysis. Clin Infect Dis. 2009;49:93–101.

    Article  CAS  PubMed  Google Scholar 

  124. Patel GP, Balk RA. Systemic steroids in severe sepsis and septic shock. Am J Respir Crit Care Med. 2012;185:133–9.

    Article  CAS  PubMed  Google Scholar 

  125. National Quality Forum Committee Recommends Revision for Sepsis Measure. April 22, 2014. The National Quality Forum. http://www.qualityforum.org.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Mello MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mello, P., Gusmao-Flores, D., Dellinger, R.P. (2016). Sepsis. In: O'Donnell, J., Nácul, F. (eds) Surgical Intensive Care Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-19668-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19668-8_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19667-1

  • Online ISBN: 978-3-319-19668-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics