Skip to main content

Scheduling Connections via Path and Edge Multicoloring

  • Conference paper
  • First Online:
Ad-hoc, Mobile, and Wireless Networks (ADHOC-NOW 2015)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 9143))

Included in the following conference series:

Abstract

We consider path multicoloring problems, in which one is given a collection of paths defined on a graph and is asked to color some or all of them so as to optimize certain objective functions. Typical objectives are: (a) the minimization of the average, over all edges, of the maximum-multiplicity color when the number of colors is given (MinAvgMult-PMC), (b) the minimization of the number of colors when the maximum multiplicity for each edge is given (Min-PMC), or (c) the maximization of the number of colored paths when both the number of colors and a maximum multiplicity constraint for each edge are given (Max-PMC). Such problems also capture edge multicoloring variants (such as MinAvgMult-EMC, Min-EMC, and MaxEMC) as special cases and find numerous applications in resource allocation, most notably in optical and wireless networks, and in communication task scheduling.

Our contribution is two-fold: On the one hand, we give an exact polynomial-time algorithm for Min-PMC on spider networks with even admissible color multiplicities on each edge. On the other hand, we present an approximation algorithm for MinAvgMult-PMC in star networks, with a ratio strictly better than 2; our algorithm uses an appropriate path orientation. We also show that any algorithm which is based on path orientation cannot achieve an approximation ratio better than \(\frac{7}{6}\). Our results apply to the corresponding edge multicoloring problems as well.

Research supported in part by the ALGONOW project, co-financed by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program Education and Lifelong Learning of the National Strategic Reference Framework (NSRF) Research Funding Program: THALES, Investing in knowledge society through the European Social Fund.

E. Bampas—Partial support by the ANR project DISPLEXITY (ANR-11-BS02-014).

C. Karousatou—This work was done while Christina Karousatou was with the School of Electrical and Computer Engineering, National Technical University of Athens, Greece.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A spider graph is a tree with at most one node of degree strictly greater than \(2\). A caterpillar is a tree in which all nodes of degree \(2\) or more lie on the same simple path.

References

  1. Andrews, M., Zhang, L.: Minimizing maximum fiber requirement in optical networks. J. Comput. Syst. Sci. 72(1), 118–131 (2006). http://dx.doi.org/10.1016/j.jcss.2005.08.001

    Article  MATH  MathSciNet  Google Scholar 

  2. Bampas, E., Pagourtzis, A., Pierrakos, G., Potika, K.: On a noncooperative model for wavelength assignment in multifiber optical networks. IEEE/ACM Trans. Netw. 20(4), 1125–1137 (2012)

    Article  Google Scholar 

  3. Bampas, E., Pagourtzis, A., Pierrakos, G., Syrgkanis, V.: Selfish resource allocation in optical networks. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 25–36. Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-38233-8

    Chapter  Google Scholar 

  4. Barrett, C.L., Kumar, V.S.A., Marathe, M.V., Thite, S., Istrate, G.: Strong edge coloring for channel assignment in wireless radio networks. In: 4th IEEE Conference on Pervasive Computing and Communications Workshops (PerCom 2006 Workshops), 13–17 March 2006, Pisa, Italy, pp. 106–110. IEEE Computer Society (2006). http://doi.ieeecomputersociety.org/10.1109/PERCOMW.2006.129

  5. Bian, Z., Gu, Q.P.: Wavelength assignment in multifiber star networks. Networks 56(1), 30–38 (2010)

    MATH  MathSciNet  Google Scholar 

  6. Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand flow in a tree. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 410–425. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Erlebach, T., Jansen, K.: Maximizing the number of connections in optical tree networks. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, p. 179. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. Erlebach, T., Jansen, K.: The complexity of path coloring and call scheduling. Theor. Comput. Sci. 255(1–2), 33–50 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Erlebach, T., Pagourtzis, A., Potika, K., Stefanakos, S.K.: Resource allocation problems in multifiber WDM tree networks. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 218–229. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Gabow, H.N.: Using Euler partitions to edge color bipartite multigraphs. Int. J. Comput. Inf. Sci. 5(4), 345–355 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  11. Golumbic, M.C., Jamison, R.E.: The edge intersection graphs of paths in a tree. J. Comb. Theory Ser. B 38(1), 8–22 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gonnet, G.H.: Expected length of the longest probe sequence in hash code searching. J. ACM 28(2), 289–304 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  13. Holyer, I.: The NP-completeness of edge-colouring. SIAM J. Comput. 10(4), 718–720 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hsu, C., Liu, P., Wang, D., Wu, J.: Generalized edge coloring for channel assignment in wireless networks. In: 2006 International Conference on Parallel Processing (ICPP 2006), 14–18 August 2006, Columbus, Ohio, USA, pp. 82–92. IEEE Computer Society (2006). http://dx.doi.org/10.1109/ICPP.2006.45

  15. Coffman Jr., E.G., Garey, M.R., Johnson, D.S., LaPaugh, A.S.: Scheduling file transfers. SIAM J. Comput. 14(3), 744–780 (1985). http://dx.doi.org/10.1137/0214054

    Article  MATH  MathSciNet  Google Scholar 

  16. Kyasanur, P., Vaidya, N.H.: Capacity of multichannel wireless networks under the protocol model. IEEE/ACM Trans. Netw. 17(2), 515–527 (2009). http://doi.acm.org/10.1145/1552193.1552205

    Article  Google Scholar 

  17. Leven, D., Galil, Z.: NP completeness of finding the chromatic index of regular graphs. J. Algorithms 4(1), 35–44 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, G., Simha, R.: On the wavelength assignment problem in multifiber WDM star and ring networks. In: INFOCOM, pp. 1771–1780 (2000). http://www.ieee-infocom.org/2000/papers/222.ps

  19. Nomikos, C., Pagourtzis, A., Potika, K., Zachos, S.: Fiber cost reduction and wavelength minimization in multifiber WDM networks. In: Mitrou, N.M., Kontovasilis, K., Rouskas, G.N., Iliadis, I., Merakos, L. (eds.) NETWORKING 2004. LNCS, vol. 3042, pp. 150–161. Springer, Heidelberg (2004)

    Google Scholar 

  20. Nomikos, C., Pagourtzis, A., Potika, K., Zachos, S.: Routing and wavelength assignment in multifiber WDM networks with non-uniform fiber cost. Comput. Netw. 50(1), 1–14 (2006). http://dx.doi.org/10.1016/j.comnet.2004.11.028

    Article  MATH  Google Scholar 

  21. Nomikos, C., Pagourtzis, A., Zachos, S.: Routing and path multicoloring. Inf. Process. Lett. 80(5), 249–256 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pagourtzis, A., Potika, K., Zachos, S.: Path multicoloring with fewer colors in spiders and caterpillars. Computing 80(3), 255–274 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Potika, K.: Maximizing the number of connections in multifiber WDM chain, ring and star networks. In: Boutaba, R., Almeroth, K.C., Puigjaner, R., Shen, S., Black, J.P. (eds.) NETWORKING 2005. LNCS, vol. 3462, pp. 1465–1470. Springer, Heidelberg (2005)

    Google Scholar 

  24. Raghavan, P., Upfal, E.: Efficient routing in all-optical networks. In: Leighton, F.T., Goodrich, M.T. (eds.) STOC, pp. 134–143. ACM (1994)

    Google Scholar 

  25. Winkler, P., Zhang, L.: Wavelength assignment and generalized interval graph coloring. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 12–14, 2003, Baltimore, Maryland, USA, pp. 830–831. ACM/SIAM (2003). http://dl.acm.org/citation.cfm?id=644108.644246

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Bampas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bampas, E., Karousatou, C., Pagourtzis, A., Potika, K. (2015). Scheduling Connections via Path and Edge Multicoloring. In: Papavassiliou, S., Ruehrup, S. (eds) Ad-hoc, Mobile, and Wireless Networks. ADHOC-NOW 2015. Lecture Notes in Computer Science(), vol 9143. Springer, Cham. https://doi.org/10.1007/978-3-319-19662-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19662-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19661-9

  • Online ISBN: 978-3-319-19662-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics