Skip to main content

Energy Efficient Small-Cell Discovery Using Users’ Mobility Prediction

  • Conference paper
  • First Online:
Ad-hoc, Mobile, and Wireless Networks (ADHOC-NOW 2015)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 9143))

Included in the following conference series:

  • 913 Accesses

Abstract

Deployment of small cells (i.e., picocells and femtocells) within macrocell coverage is seen as a cost-effective way to increase system capacity and to equip wireless WANs with the ability to keep up with the increasing demand for data capacity. Existing cell discovery mechanisms are tailored for homogeneous networks (macrocells only). User Equipment (UE) cannot efficiently save energy in the process of small cells detection in order to exploit offloading opportunities provided by such heterogeneous deployments. In this paper, we propose a Mobility Prediction aware Scanning Start Time Estimation (MPSTE) scheme to discover/detect small cells efficiently in terms of energy. Based on the current data on road segments (e.g., density of road segment, UEs’ speeds and physical aspects of road segment) and current behaviour of UEs on the road segment, MPSTE allows deriving the time interval UE will spend in the small cell and making decision to perform handoff or no; if handoff is necessary, MPSTE derives the best time to begin the scanning process to discover small cells. Simulation results show the benefits of MPSTE over existing schemes in terms of energy saving by UEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prasad, A., Lunden, P., Tirkkonen, O., Wijting, C.: Enhanced small cell discovery in heterogeneous networks using optimized RF fingerprints. In: IEEE PIMRC, pp. 2973–2977 London, UK, September 2013

    Google Scholar 

  2. Akyildiz, I.F., Gutierrez-Estevez, D.M., Balakrishnan, R., Chavarria-Reyes, E.: LTE-Advanced and the evolution to Beyond 4G (B4G) systems. Phys. Commun. 10, 31–60 (2013)

    Article  Google Scholar 

  3. Kishiyama, Y., Benjebbour, A., Nakamura, T., Ishii, H.: Future steps of LTE-A: evolution toward integration of local area and wide area systems. IEEE Wirel. Commun. 20, 12–18 (2013)

    Article  Google Scholar 

  4. Damnjanovic, A., Montojo, J., Joonyoung, C., Hyoungju, J., Jin, Y., Pingping, Z.: UE’s role in LTE advanced heterogeneous networks. IEEE Commun. Mag. 50, 164–176 (2012)

    Article  Google Scholar 

  5. Prasad, A., Lunden, P., Tirkkonen, O., Wijting, C.: Energy efficient small-cell discovery using received signal strength based radio maps. In: IEEE VTC, pp. 1–5, Dresden, Germany, June 2013

    Google Scholar 

  6. Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N., Thomas, T.: LTE-advanced: next-generation wireless broadband technology [Invited Paper]. IEEE Wirel. Commun. 17, 10–22 (2010)

    Article  Google Scholar 

  7. Nadembega, A., Hafid, A., Taleb, T.: A destination prediction model based on historical data, contextual knowledge and spatial conceptual maps. In: Proceedings of the IEEE ICC, Ottawa, Ontario, Canada, June 2012

    Google Scholar 

  8. Nadembega, A., Hafid, A., Taleb, T.: A path prediction model to support mobile multimedia streaming. In: Proceedings of the IEEE ICC, Ottawa, Ontario, Canada, June 2012

    Google Scholar 

  9. Barbera, S., Pedersen, K., Michaelsen, P.H., Rosa, C.: Mobility analysis for inter-site carrier aggregation in LTE heterogeneous networks. In: IEEE VTC, pp. 1–5, Las Vegas, NV, USA, September 2013

    Google Scholar 

  10. Pedersen, K.I., Michaelsen, P.H., Rosa, C., Barbera, S.: Mobility enhancements for LTE-advanced multilayer networks with inter-site carrier aggregation. IEEE Commun. Mag. 51, 64–71 (2013)

    Article  Google Scholar 

  11. Lopez-Perez, D., Guvenc, I., Xiaoli, C.: Mobility management challenges in 3GPP heterogeneous networks. IEEE Commun. Mag. 50, 70–78 (2012)

    Article  Google Scholar 

  12. Prasad, A., Tirkkonen, O., Lunden, P., Yilmaz, O.N.C., Dalsgaard, L., Wijting, C.: Energy-efficient inter-frequency small cell discovery techniques for LTE-advanced heterogeneous network deployments. IEEE Commun. Mag. 51, 72–81 (2013)

    Article  Google Scholar 

  13. Prasad, A., Lunden, P., Tirkkonen, O., Wijting, C.: Energy-efficient flexible inter-frequency scanning mechanism for enhanced small cell discovery. In: IEEE VTC, pp. 1–5. Dresden, Germany, June 2013

    Google Scholar 

  14. Yang, W.-H., Wang, Y.-C., Tseng, Y.-C., Lin, B.-S.P.: Energy-efficient network selection with mobility pattern awareness in an integrated WiMAX and WiFi network. Int’l. J. Commun. Sys 23, 213–230 (2010)

    Article  Google Scholar 

  15. Nadembega, A., Hafid, A., Taleb, T.: Handoff time estimation model for vehicular communications. In: Proceedings of the IEEE ICC, Budapest, Hungary, June 2013

    Google Scholar 

  16. Nadembega, A., Hafid, A., Taleb, T.: A framework for mobility prediction and high bandwidth utilization to support mobile multimedia streaming. In: Proceedings of the IEEE ANTS, Chennai, India, December 2013

    Google Scholar 

  17. 3GPP TR 36.839, E-UTRA; Mobility Enhancements in Heterogeneous Networks, v. 11.0.0, September 2012

    Google Scholar 

  18. 3GPP TS 36.331, E-UTRA: RRC Protocol Specification, v. 10.5.0, March 2012

    Google Scholar 

  19. Nadembega, A., Hafid, A., Taleb, T.: An integrated predictive mobile-oriented bandwidth-reservation framework to support mobile multimedia. In: IEEE TWC, vol. 13(12) December 2014

    Google Scholar 

  20. Nadembega, A., Hafid, A., Taleb, T.: Mobility prediction-aware bandwidth reservation scheme for mobile networks. In: IEEE TVT, vol. PP(99), August 2014

    Google Scholar 

  21. Nadembega, A., Hafid, A., Taleb, T.: DAMP: a destination and mobility path prediction scheme. In: IEEE TVT, vol. PP(99), August 2014

    Google Scholar 

  22. Xenakis, D., Passas, N., Merakos, L., Verikoukis, C.: Mobility management for femtocells in LTE-advanced: key aspects and survey of handover decision algorithms. In: IEEE Surveys and Tutorials, vol. 16(1), pp. 64–91, (2014, first quarter)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apollinaire Nadembega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nadembega, A., Hafid, A., Brisebois, R. (2015). Energy Efficient Small-Cell Discovery Using Users’ Mobility Prediction. In: Papavassiliou, S., Ruehrup, S. (eds) Ad-hoc, Mobile, and Wireless Networks. ADHOC-NOW 2015. Lecture Notes in Computer Science(), vol 9143. Springer, Cham. https://doi.org/10.1007/978-3-319-19662-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19662-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19661-9

  • Online ISBN: 978-3-319-19662-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics