Skip to main content

Optimal Design of Truss Structures with Continuous Variables Using Colliding Bodies Optimization

  • Chapter
  • First Online:
  • 504 Accesses

Abstract

This chapter consists of two parts. In part 1, comprehensive study of purely size optimization is presented. In part 2, simultaneous size and topology optimization of truss structures under static loads and dynamic frequency constraints are studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kaveh A, Mahdavi VR (2014) Colliding bodies optimization method for optimum design of truss structures with continuous variables. Adv Eng Softw 70:1–12

    Article  Google Scholar 

  2. Kaveh A, Mahdavai VR (2014) Colliding-bodies optimization for truss optimization with multiple frequency constraints. J Comput Civ Eng ASCE. 10.1061/(ASCE)CP. 1943-5487. 0000402

  3. Kaveh A, Mahdavi VR (2015) Colliding bodies optimization for size and topology optimization of truss structures. Struct Eng Mech An Int J 53(5):847–865

    Article  Google Scholar 

  4. Kaveh A, Mahdavai VR (2014) Colliding bodies optimization: a novel meta-heuristic method. Comput Struct 139:18–27

    Article  Google Scholar 

  5. Rajeev S, Krishnamoorthy CS (1992) Discrete optimization of structures using genetic algorithms. Struct Eng ASCE 118:1233–1250

    Article  Google Scholar 

  6. Schutte JJ, Groenwold AA (2003) Sizing design of truss structures using particle swarms. Struct Multi Optim 25:261–269

    Article  Google Scholar 

  7. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82:781–798

    Article  Google Scholar 

  8. Kaveh A, Khayat Azad M (2012) A novel meta-heuristic method: ray optimization. Comput Struct 112–113:283–294

    Article  Google Scholar 

  9. Erbatur F, Hasançebi O, Tütüncü I, Kiliç H (2000) Optimal design of planar and space structures with genetic algorithms. Comput Struct 75:209–224

    Article  Google Scholar 

  10. Camp CV, Bichon J (2004) Design of space trusses using ant colony optimization. J Struct Eng ASCE 130:741–751

    Article  Google Scholar 

  11. Perez RE, Behdinan K (2007) Particle swarm approach for structural design optimization. Comput Struct 85:1579–1588

    Article  Google Scholar 

  12. Camp CV (2007) Design of space trusses using Big Bang-Big Crunch optimization. J Struct Eng ASCE 133:999–1008

    Article  Google Scholar 

  13. Soh CK, Yang J (1996) Fuzzy controlled genetic algorithm search for shape optimization. J Comput Civil Eng ASCE 10:143–150

    Article  Google Scholar 

  14. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82:781–798

    Article  Google Scholar 

  15. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213:267–289

    Article  MATH  Google Scholar 

  16. Kaveh A, Ilchi Ghazaan M, Bakhshpoori T (2013) An improved ray optimization algorithm for design of truss structures. Period Polytech Civil Eng 57:97–112

    Article  Google Scholar 

  17. American Institute of Steel Construction (AISC) (1989) Manual of steel construction allowable stress design, 9th edn. AISC, Chicago

    Google Scholar 

  18. Saka MP (1990) Optimum design of pin-jointed steel structures with practical applications. J Struct Eng ASCE 116:2599–2620

    Article  Google Scholar 

  19. Degertekin SO, Hayalioglu MS (2013) Sizing truss structures using teaching-learning based optimization. Comput Struct 119:177–188

    Article  Google Scholar 

  20. Kaveh A, Talatahari S (2009) A particle swarm ant colony optimization for truss structures with discrete variables. J Constr Steel Res 65:1558–1568

    Article  Google Scholar 

  21. Hasançebi O, Çarbas S, Dogan E, Erdal F, Saka MP (2009) Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures. Comput Struct 87:284–302

    Article  Google Scholar 

  22. MakiabadiMH Baghlani A, Rahnema H, Hadianfard MA (2013) Optimal design of truss bridges using teaching-learning-base optimization algorithm. Int J Optim Civil Eng 3(3):499–510

    Google Scholar 

  23. AustRoads (1992) Austroads bridge design code, 92. Australian Railway Association, NSW

    Google Scholar 

  24. Gholizadeh S, Salajegheh E, Torkzadeh P (2008) Structural optimization with frequency constraints by genetic algorithm using wavelet radial basis function neural network. J Sound Vib 312:316–331

    Article  Google Scholar 

  25. Kaveh A, Zolghadr A (2012) Truss optimization with natural frequency constraints using a hybridized CSS-BBBC algorithm with trap recognition capability. Comput Struct 102–103:14–27

    Article  Google Scholar 

  26. Wang D, Zhang WH, Jiang JS (2004) Truss optimization on shape and sizing with frequency constraints. AIAA J 42:1452–1456

    Google Scholar 

  27. Lingyun W, Mei Z, Guangming W, Guang M (2005) Truss optimization on shape and sizing with frequency constraints based on genetic algorithm. J Comput Mech 25:361–368

    Article  Google Scholar 

  28. Gomes MH (2011) Truss optimization with dynamic constraints using a particle swarm algorithm. Expert Syst Appl 38:957–968

    Article  Google Scholar 

  29. Kaveh A, Zolghadr A (2011) Shape and size optimization of truss structures with frequency constraints using enhanced charged system search algorithm. Asian J Civil Eng 12:487–509

    Google Scholar 

  30. Kaveh A, Zolghadr A (2014) Democratic PSO for truss layout and size optimization with frequency constraints. Comput Struct 130:10–21

    Article  Google Scholar 

  31. Konzelman CJ (1986) Dual methods and approximation concepts for structural optimization. M.Sc. thesis. Dept Mech Eng, University of Toronto, Canada

    Google Scholar 

  32. Sedaghati R (2006) Benchmark case studies in structural design optimization using the force method. Int J Solids Struct 42:5848–5871

    Article  Google Scholar 

  33. Soh CK, Yang J (1996) Fuzzy controlled genetic algorithm search for shape optimization. J Comput Civil Eng ASCE 10:143–150

    Article  Google Scholar 

  34. Kaveh A, Talatahari S (2009) Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput Struct 87:267–283

    Article  Google Scholar 

  35. Xu B, Jiang J, Tong W, Wu K (2003) Topology group concept for truss topology optimization with frequency constraints. J Sound Vib 261(5):911–925

    Article  Google Scholar 

  36. Wang YF, Sun HC (1995) Optimal topology designs of trusses with discrete size variables subjected to multiple constraint and loading cases. Acta Mech Sinica 27:365–369

    Google Scholar 

  37. Kaveh A, Ahmadi B (2014) Sizing, geometry and topology optimization of trusses using force method and supervised charged system search. Struct Eng Mech An Int J 50(3):365–382

    Article  Google Scholar 

  38. Kutylowski R, Rasiak B (2014) The use of topology optimization in the design of truss and frame bridge girders. Struct Eng Mech An Int J 51(1):67–88

    Article  Google Scholar 

  39. Kaveh A, Zolghadr A (2013) Topology optimization of trusses considering static and dynamic constraints using the CSS. Appl Soft Comput 13(5):27–34

    Article  Google Scholar 

  40. Miguel LFF, Lopez RH, Miguel LFF (2013) Multimodal size, shape, and topology optimisation of truss structures using the firefly algorithm. Adv Eng Softw 56:23–37

    Article  Google Scholar 

  41. Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37(5):447–465

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaveh .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kaveh, A., Mahdavi, V.R. (2015). Optimal Design of Truss Structures with Continuous Variables Using Colliding Bodies Optimization. In: Colliding Bodies Optimization. Springer, Cham. https://doi.org/10.1007/978-3-319-19659-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19659-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19658-9

  • Online ISBN: 978-3-319-19659-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics