Skip to main content

Measurements of Electroweak Z Boson + Dijet Production

  • Chapter
  • First Online:
QCD Radiation in Top-Antitop and Z+Jets Final States

Part of the book series: Springer Theses ((Springer Theses))

  • 226 Accesses

Abstract

The production of dijets in association with a Z-boson (Z\(_{\text {jj}}\) production) is dominated by the Drell-Yan process, with the additional jets arising as a result of the strong interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\mathrm{p}_{\mathrm{T}}^\mathrm{balance}\) is defined as:

    $$\begin{aligned} \mathrm{p}_{\mathrm{T}}^\mathrm{balance}= \frac{(p^{l_1}+p^{l_2} + p^{j_1} + p^{j_2})_\mathrm{T}}{\mathrm{p}_{\mathrm{T}}^{l_1} + \mathrm{p}_{\mathrm{T}}^{l_2} + \mathrm{p}_{\mathrm{T}}^{j_1} + \mathrm{p}_{\mathrm{T}}^{j_2}} \end{aligned}$$
    (7.1)

    where \(l_1\) and \(l_2\) label the two leptons which make up the Z-boson candidate.

  2. 2.

    In the EWUnfolding package the default procedure treats the correction factors like efficiencies, and the binomial uncertainty equation is used, \(\sigma \,\)=\(\,\sqrt{\epsilon (1-\epsilon )/N}\). However, these correction factors are not true efficiencies and in principle could have values larger than 1.

  3. 3.

    Apart from the differential cross section as a function of \(|\Delta {y}|\) in the search and control phase spaces, all distributions are fit across their entire range. The differential cross section as a function of \(|\Delta {y}|\) in these phase spaces has an unusual shape and is difficult to fit. Therefore the fit is performed in the steeply-falling region 3 \(<\) \(|{\Delta }y|\) \(<\) 8, where statistics are lower and the smoothing procedure becomes more important.

  4. 4.

    \(\sigma _\mathrm{{toy}}\) is either added or taken away from \(\mu _\mathrm{{toy}}\) to produce the largest difference with respect to the nominal \(N_\mathrm{EW}\).

References

  1. ATLAS Collaboration, (2012). Measurement of the production cross section for Z/gamma* in association with jets in \(pp\) collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector. Physical Review, D85, 032009.

    ADS  Google Scholar 

  2. ATLAS Collaboration, (2013). Measurement of the production cross section of jets in association with a Z boson in pp collisions at \(\sqrt{s}\) = 7 TeV with the ATLAS detector. JHEP, 07, 032.

    ADS  Google Scholar 

  3. Chatrchyan, S., et al. (2012). Jet production rates in association with \(W\) and \(Z\) Bosons in \(pp\) collisions at \(\sqrt{s}=7\) TeV. JHEP, 1201, 010.

    Article  ADS  Google Scholar 

  4. Khachatryan, V., et al. (2014). Measurements of jet multiplicity and differential production cross sections of Z+jets events in proton-proton collisions at sqrt(s) = 7 TeV. arXiv: 1408.3104 [hep-ex].

  5. Arnold, K., Bellm, J., Bozzi, G., Brieg, M., Campanario, F. et al., (2001). VBFNLO: A Parton Level Monte Carlo for processes with electroweak Bosons - manual for version 2.5.0. arXiv: 1107.4038 [hep-ph].

  6. Oleari, C., & Zeppenfeld, D. (2004). QCD corrections to electroweak nu(l) j j and l+ l- j j production. Physical Review D, 69, 093004.

    Article  ADS  Google Scholar 

  7. ATLAS Collaboration, (2014). Measurement of the electroweak production of dijets in association with a Z-boson and distributions sensitive to vector boson fusion in proton-proton collisions at \(\sqrt{s} =\) 8 TeV using the ATLAS detector. JHEP, 1404, 031.

    ADS  Google Scholar 

  8. ATLAS Muon Combined Performance Guidelines for Analyses of 2012 Data. Retrieved 31 July 2014, from https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/MCPAnalysisGuidelinesData2012.

  9. Gleisberg, T., Hoeche, S., Krauss, F., Schonherr, M., Schumann, S., et al. (2009). Event generation with SHERPA 1.1. JHEP, 0902, 007.

    Article  ADS  Google Scholar 

  10. Nason, P. (2004). A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP, 0411, 040.

    Article  ADS  Google Scholar 

  11. Frixione, S., Nason, P., & Oleari, C. (2007). Matching NLO QCD computations with Parton Shower simulations: The POWHEG method. JHEP, 0711, 070.

    Article  ADS  Google Scholar 

  12. Alioli, S., Nason, P., Oleari, C., & Re, E. (2010). A general framework for implementing NLO calculations in shower Monte Carlo programs: The POWHEG BOX. JHEP, 1006, 043.

    Article  ADS  Google Scholar 

  13. Catani, S., Krauss, F., Kuhn, R., & Webber, B. (2001). QCD matrix elements \(+\) parton showers. JHEP, 0111, 063.

    Article  ADS  Google Scholar 

  14. Campbell, J. M., Ellis, R. K., Nason, P., & Zanderighi, G. (2013). W and Z bosons in association with two jets using the POWHEG method. JHEP, 1308, 005.

    Article  ADS  Google Scholar 

  15. Jager, B., Schneider, S., & Zanderighi, G. (2012). Next-to-leading order QCD corrections to electroweak Zjj production in the POWHEG BOX. JHEP, 1209, 083.

    Article  ADS  Google Scholar 

  16. Hamilton, K., Nason, P., & Zanderighi, G. (2012). MINLO: Multi-scale improved NLO. JHEP, 1210, 155.

    Article  ADS  Google Scholar 

  17. Hoeche, S., Schumann, S., & Siegert, F. (2010). Hard photon production and matrix-element parton-shower merging. Physical Review D, 81, 034026.

    Article  ADS  Google Scholar 

  18. Schumann, S., & Krauss, F. (2008). A Parton shower algorithm based on Catani-Seymour dipole factorisation. JHEP, 0803, 038.

    Article  ADS  Google Scholar 

  19. Hoeche, S., & Schonherr, M. (2012). Uncertainties in next-to-leading order plus parton shower matched simulations of inclusive jet and dijet production. Physical Review D, 86, 094042.

    Article  ADS  Google Scholar 

  20. Skands, P. Z. (2010). Tuning Monte Carlo generators: The Perugia tunes. Physical Review D, 82, 074018.

    Article  ADS  Google Scholar 

  21. Agostinelli, S. et al., (2003). Geant4-a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506, 250–303. issn: 0168–9002.

    Google Scholar 

  22. Allison, J., et al. (2006). Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53, 270–278. issn: 0018–9499.

    Google Scholar 

  23. ATLAS Collaboration, (2011). Further ATLAS tunes of PYTHIA6 and Pythia 8 tech. rep. ATL-PHYS-PUB-2011-014 (CERN, Geneva).

    Google Scholar 

  24. Martin, A., Stirling, W., Thorne, R., & Watt, G. (2009). Parton distributions for the LHC. European Physical Journal C, 63, 189–285.

    Article  ADS  Google Scholar 

  25. Mangano, M. L., Moretti, M., Piccinini, F., Pittau, R., & Polosa, A. D. (2003). ALPGEN, a generator for hard multiparton processes in hadronic collisions. JHEP, 0307, 001.

    Article  ADS  Google Scholar 

  26. ATLAS Collaboration, (2011). New ATLAS event generator tunes to 2010 data tech. rep. ATL-PHYS-PUB-2011-008 (CERN, Geneva).

    Google Scholar 

  27. Frixione, S., & Webber, B. R. (2002). Matching NLO QCD computations and parton shower simulations. JHEP, 0206, 029.

    Article  ADS  Google Scholar 

  28. Czakon, M. & Mitov, A. (2011). Top++: A program for the calculation of the top-pair cross-section at Hadron colliders. arXiv: 1112.5675 [hep-ph].

  29. D’Agostini, G. (2010). Improved iterative Bayesian unfolding. ArXiv e-prints. arXiv: 1010.0632 [physics.data-an].

  30. D’Agostini, G. (2010). Improved iterative Bayesian unfolding. arXiv:1010.0632 [hep-ph].

  31. Gutschow, C., Jones, G., Joshi, K., Nurse, E., & Pilkington, A. D. (2013) Measurement of the electroweak Z-boson plus dijet production cross section and distributions sensitive to the vector boson fusion production process in pp collisions at sqrts = 8 TeV with the ATLAS detector tech. rep. ATL-COM-PHYS-2013-331 (CERN, Geneva).

    Google Scholar 

  32. ATLAS Collaboration, (2012). Measurements of the pseudorapidity dependence of the total transverse energy in proton-proton collisions at \(\sqrt{s}=7\) TeV with ATLAS. JHEP, 1211, 033.

    ADS  Google Scholar 

  33. ATLAS Standard Model Working Group unfolding recommendations. Retrieved June 13, 2014, from https://twiki.cern.ch/twiki/bin/view/AtlasProtected/StandardModelUnfolding_#How_should_systematic_uncertaint.

  34. Andersen, J. R., & Smillie, J. M. (2007). QCD and electroweak interference in Higgs production by gauge boson fusion. Physical Review D, 75, 037301.

    Article  ADS  Google Scholar 

  35. Ciccolini, M., Denner, A., & Dittmaier, S. (2008). Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC. Physical Review D, 77, 013002.

    Article  ADS  Google Scholar 

  36. Andersen, J., Binoth, T., Heinrich, G., & Smillie, J. (2008). Loop induced interference effects in Higgs Boson plus two jet production at the LHC. JHEP, 0802, 057.

    Article  ADS  Google Scholar 

  37. Bredenstein, A., Hagiwara, K., & Jager, B. (2008). Mixed QCD-electroweak contributions to Higgs-plus-dijet production at the LHC. Physical Review D, 77, 073004.

    Article  ADS  Google Scholar 

  38. Siegert, F. (2013). Private communication. Nov., 1,

    Google Scholar 

  39. Baur, U. & Zeppenfeld, D. (1993). Measuring three vector boson couplings in \(qq\rightarrow qqW\) at the SSC. arXiv:hep-ph/9309227 [hep-ph].

  40. Hagiwara, K., Peccei, R., Zeppenfeld, D., & Hikasa, K. (1987). Probing the Weak Boson sector in \(e^+ e^- \rightarrow W^+ W^-\). Nuclear Physics, B282, 253.

    Article  ADS  Google Scholar 

  41. Cowan, G., Cranmer, K., Gross, E., & Vitells, O. (2011). Asymptotic formulae for likelihood-based tests of new physics. European Physical Journal C, 71, 1554.

    Article  ADS  Google Scholar 

  42. Blazey, G. et al., (2012). A measurement of WZ production in proton-proton collisions at \(sqrt(s) = 7\) TeV with the ATLAS Detector tech. rep. ATL-COM-PHYS-2012-488 (CERN, Geneva).

    Google Scholar 

  43. ATLAS Collaboration. Measurement of \(WZ\) production in proton-proton collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector. ATLAS Collaboration.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Joshi .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Joshi, K. (2015). Measurements of Electroweak Z Boson + Dijet Production. In: QCD Radiation in Top-Antitop and Z+Jets Final States. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-19653-4_7

Download citation

Publish with us

Policies and ethics