Skip to main content

Motion Capture Systems for Jump Analysis

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9121))

Included in the following conference series:

Abstract

This paper presents several methods used in motion capture to measure jumps. The traditional systems to acquire jump information are force plates, but they are very expensive to most people. Amateur sports enthusiasts that want to improve their performance, do not have enough money to spend in professional systems (\(\pm 20.000\) EUR). The price reduction of electronic devices, specifically the inertial measurement units (IMU), are generating new methods of motion capture. In this paper we present the state-of-art motion capture systems for this purpose, from the classical force plates to latest released IMUs. Noise reduction techniques, as an inherent part of motion capture systems, will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.xbox.com/en-US/xbox-one/accessories/kinect-for-xbox-one.

References

  1. Owens, B., Cameron, K., Duffey, M., Vargas, D., Duffey, M., Mountcastle, S., Padua, D., Nelson, B.: Military movement training program improves jump-landing mechanics associated with anterior cruciate ligament injury risk. J. Surg. Orthop. Adv. 22(1), 66–70 (2012)

    Article  Google Scholar 

  2. Kitagawa, M., Windsor, B.: MoCap for Artists: Workflow and Techniques for Motion Capture. Taylor & Francis, London (2008)

    Google Scholar 

  3. Bregler, C.: Motion capture technology for entertainment [in the spotlight]. IEEE Signal Process. Mag. 24(6), 158–160 (2007)

    Article  Google Scholar 

  4. Supej, M.: 3d measurements of alpine skiing with an inertial sensor motion capture suit and gnss rtk system. J. Sports Sci. 28(7), 759–769 (2010)

    Article  Google Scholar 

  5. Rychlik, M.: Application of mocap systems in medical diagnostic and ergonomic analysis of body movements of disabled persons. In: Proceedings of 13th International Conference on Biomedical Engineering, pp.194–199 (2009)

    Google Scholar 

  6. Stanton, C., Bogdanovych, A., Ratanasena, E.: Teleoperation of a humanoid robot using full-body motion capture, example movements, and machine learning. In: Proceedings of Australasian Conference on Robotics and Automation (2012)

    Google Scholar 

  7. Menache, A.: Understanding Motion Capture For Computer Animation. Elsevier, Burlington (2011)

    Google Scholar 

  8. Fern’ndez-Baena, A., Susin, A., Lligadas, X.: Biomechanical validation of upper-body and lower-body joint movements of kinect motion capture data for rehabilitation treatments. In: 2012 4th International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 56–661. IEEE (2012)

    Google Scholar 

  9. Ashby, B.M., Heegaard, J.H.: Role of arm motion in the standing long jump. J. Biomech. 35(12), 1631–1637 (2002)

    Article  Google Scholar 

  10. Linthorne, N.P.: Analysis of standing vertical jumps using a force platform. Am. J. Phys. 69(11), 1198–1204 (2001)

    Article  Google Scholar 

  11. Gerrish, P.: A dynamical analysis of the standing vertical jump. Ph.D thesis, Teacher College, Columbia University (1934)

    Google Scholar 

  12. Offenbacher, E.L.: Physics and the vertical jump. Am. J. Phys. 38(7), 829–836 (1970)

    Article  Google Scholar 

  13. Chardonnens, J., Favre, J., Cuendet, F., Gremion, G., Aminian, K.: Measurement of the dynamics in ski jumping using a wearable inertial sensor-based system. J. Sports Sci. 32(6), 591–600 (2014)

    Article  Google Scholar 

  14. Owen, N.J., Watkins, J., Kilduff, L.P., Bevan, H.R., Bennett, M.A.: Development of a criterion method to determine peak mechanical power output in a countermovement jump. J. Strength Conditioning Res. 28(6), 1552–1558 (2014)

    Google Scholar 

  15. Roriz, P., Carvalho, L., Frazão, O., Santos, J.L., Simões, J.A.: From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: a review. J. Biomech. 47(6), 1251–1261 (2014)

    Article  Google Scholar 

  16. Cloud, B.A., Zhao, K.D., Breighner, R., Giambini, H., An, K.N.: Agreement between fiber optic and optoelectronic systems for quantifying sagittal plane spinal curvature in sitting. Gait Posture 40(3), 369–374 (2014)

    Article  Google Scholar 

  17. Perez-Sala, X., Escalera, S., Angulo, C., Gonzalez, J.: A survey on model based approaches for 2d and 3d visual human pose recovery. Sensors 14(3), 4189–4210 (2014)

    Article  Google Scholar 

  18. Argus, C.K., Chapman, D.W.: The effect of initial knee angle on the reliability of variables derived from a squat jump. Med. Sport 18(4), 125–130 (2014)

    Article  Google Scholar 

  19. Bergmann, J., Kumpulainen, S., Avela, J., Gruber, M.: Acute effects of motor imagery on performance and neuromuscular control in maximal drop jumps. J. Imag. Res. Sport Phys. Act. 8(1), 45–53 (2013)

    Google Scholar 

  20. Weenk, D., Roetenberg, D., van Beijnum, B., Hermens, H., Veltink, P.: Ambulatory estimation of relative foot positions by fusingultrasound and inertial sensor data (2014)

    Google Scholar 

  21. Bryan, J., Kwon, J., Lee, N., Kim, Y.: Application of ultra-wide band radar for classification of human activities. IET Radar Sonar Navig. 6(3), 172–179 (2012)

    Article  Google Scholar 

  22. Mapelli, A., Zago, M., Fusini, L., Galante, D., Colombo, A., Sforza, C.: Validation of a protocol for the estimation of three-dimensional body center of mass kinematics in sport. Gait Posture 39(1), 460–465 (2014)

    Article  Google Scholar 

  23. Pàmies-Vilà, R., Font-Llagunes, J., Lugrís, U., Alonso, F., Cuadrado, J.: A computational benchmark for 2d gait analysis problems. In: Flores, P., Viadero, F. (eds.) New Trends in Mechanism and Machine Science, pp. 689–697. Springer, Switzerland (2015)

    Chapter  Google Scholar 

  24. Carse, B., Meadows, B., Bowers, R., Rowe, P.: Affordable clinical gait analysis: an assessment of the marker tracking accuracy of a new low-cost optical 3d motion analysis system. Physiotherapy 99(4), 347–351 (2013)

    Article  Google Scholar 

  25. Kiernan, D., Walsh, M., O’Sullivan, R., Fitzgerald, D., OBrien, T.: Reliability of the coda cx1 motion analyser for 3-dimensional gait analysis. Gait Posture 39, S99–S100 (2014)

    Article  Google Scholar 

  26. Carroll, S., Owen, J., Hussein, M.: Reproduction of lateral ground reaction forces from visual marker data and analysis of balance response while walking on a laterally oscillating deck. Eng. Struct. 49, 1034–1047 (2013)

    Article  Google Scholar 

  27. Mayich, D.J., Novak, A., Vena, D., Daniels, T.R., Brodsky, J.W.: Gait analysis in orthopedic foot and ankle surgerytopical review, part 1 principles and uses of gait analysis. Foot Ankle Int. 35(1), 80–90 (2013)

    Article  Google Scholar 

  28. Sundaresan, A., Chellappa, R.: Markerless motion capture using multiple cameras. In: Conference on Computer Vision for Interactive and Intelligent Environment, 2005, pp. 15–26. IEEE (2005)

    Google Scholar 

  29. Rosenhahn, B., Brox, T., Kersting, U., Smith, A., Gurney, J., Klette, R.: A system for marker-less motion capture. Künstliche Intell. 1(2006), 45–51 (2006)

    Google Scholar 

  30. Pierce, R., Heller, D., Moodie, N.: Comparison of kinetic and kinematic variables during jump station and markerless motion capture vertical jumps. In: Proceedings of International Conference on Journal of Exercise Science, vol. 11, p.16 (2014)

    Google Scholar 

  31. Moen, T.S.: Evaluation of a markerless motion capture system as a tool for sports movement analysis-implications for acl injury risk assessment (2014)

    Google Scholar 

  32. Staranowicz, A., Brown, G.R., Mariottini, G.L.: Evaluating the accuracy of a mobile kinect-based gait-monitoring system for fall prediction. In: Proceedings of the 6th International Conference on PErvasive Technologies Related to Assistive Environments, p. 57. ACM (2013)

    Google Scholar 

  33. Gabel, M., Gilad-Bachrach, R., Renshaw, E., Schuster, A.: Full body gait analysis with kinect. In: Proceedings of 2012 Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 1964–1967. IEEE (2012)

    Google Scholar 

  34. Xiang, C., Hsu, H.H., Hwang, W.Y., Ma, J.: Comparing real-time human motion capture system using inertial sensors with microsoft kinect. In: 2014 7th International Conference on Ubi-Media Computing and Workshops (UMEDIA), pp. 53–58. IEEE (2014)

    Google Scholar 

  35. Park, H.S., Shiratori, T., Matthews, I., Sheikh, Y.: 3D reconstruction of a moving point from a series of 2d projections. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 158–171. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  36. Wang, J.S., Hsu, Y.L., Liu, J.N.: An inertial-measurement-unit-based pen with a trajectory reconstruction algorithm and its applications. IEEE Trans. Ind. Electron. 57(10), 3508–3521 (2010)

    Article  MathSciNet  Google Scholar 

  37. LeMoyne, R., Kerr, W., Mastroianni, T., Hessel, A.: Implementation of machine learning for classifying hemiplegic gait disparity through use of a force plate. In: 2014 13th International Conference on Machine Learning and Applications (ICMLA), pp. 379–382. IEEE (2014)

    Google Scholar 

  38. Hansen, K.T., Cronin, J.B., Newton, M.J.: The reliability of linear position transducer and force plate measurement of explosive force-time variables during a loaded jump squat in elite athletes. J. Strength Conditioning Res. 25(5), 1447–1456 (2011)

    Article  Google Scholar 

  39. Kristianslund, E., Krosshaug, T., van den Bogert, A.J.: Effect of low pass filtering on joint moments from inverse dynamics: implications for injury prevention. J. Biomech. 45(4), 666–671 (2012)

    Article  Google Scholar 

  40. Butterworth, S.: On the theory of filter amplifiers. Wirel. Eng. 7(6), 536–541 (1930)

    Google Scholar 

  41. McLellan, C.P., Lovell, D.I., Gass, G.C.: The role of rate of force development on vertical jump performance. J. Strength Conditioning Res. 25(2), 379–385 (2011)

    Article  Google Scholar 

  42. Huang, C.Y., Hsieh, T.H., Lu, S.C., Su, F.C., et al.: Effect of the kinesio tape to muscle activity and vertical jump performance in healthy inactive people. Biomed. Eng. Online 10, 70 (2011)

    Article  Google Scholar 

  43. Malfait, B., Sankey, S., Azidin, R.M.F.R., Deschamps, K., Vanrenterghem, J., Robinson, M.A., Staes, F., Verschueren, S.: How reliable are lower-limb kinematics and kinetics during a drop vertical jump? Med. Sci. Sports Exerc. 46(4), 678–685 (2014)

    Article  Google Scholar 

  44. Zihajehzadeh, S., Loh, D., Lee, M., Hoskinson, R., Park, E.: A cascaded two-step kalman filter for estimation of human body segment orientation using mems-imu. In: 2014 36th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 6270–6273. IEEE (2014)

    Google Scholar 

  45. Ahmadi, A., Mitchell, E., Destelle, F., Gowing, M., OConnor, N.E., Richter, C., Moran, K.: Automatic activity classification and movement assessment during a sports training session using wearable inertial sensors. In: 2014 11th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 98–103. IEEE (2014)

    Google Scholar 

  46. Vishnoi, N., Mitra, A., Duric, Z., Gerber, N.L.: Motion based markerless gait analysis using standard events of gait and ensemble kalman filtering. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2512–2516. IEEE (2014)

    Google Scholar 

  47. Moschas, F., Stiros, S.: Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer. Eng. Struct. 33(1), 10–17 (2011)

    Article  Google Scholar 

  48. Lugade, V., Fortune, E., Morrow, M., Kaufman, K.: Validity of using tri-axial accelerometers to measure human movement part I: posture and movement detection. Med. Eng. Phys. 36(2), 169–176 (2014)

    Article  Google Scholar 

  49. Fletcher, I.M.: An investigation into the effect of a pre-performance strategy on jump performance. J. Strength Conditioning Res. 27(1), 107–115 (2013)

    Article  Google Scholar 

  50. Fortune, E., Lugade, V., Morrow, M., Kaufman, K.: Validity of using tri-axial accelerometers to measure human movement-part ii: step counts at a wide range of gait velocities. Med. Eng. Phys. 36(6), 659–669 (2014)

    Article  Google Scholar 

  51. Stone, E.E., Butler, M., McRuer, A., Gray, A., Marks, J., Skubic, M.: Evaluation of the microsoft kinect for screening acl injury. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4152–4155. IEEE (2013)

    Google Scholar 

  52. Alonge, F., Cucco, E., D’Ippolito, F., Pulizzotto, A.: The use of accelerometers and gyroscopes to estimate hip and knee angles on gait analysis. Sensors 14(5), 8430–8446 (2014)

    Article  Google Scholar 

  53. Ng, H., Tan, W.H., Abdullah, J.: Multi-view gait based human identification system with covariate analysis. Int. Arab J. Inf. Technol. 10(5), 519–526 (2013)

    Google Scholar 

  54. Mauroy, G., Schepens, B., Willems, P.: The mechanics of running while approaching and jumping over an obstacle. Eur. J. Appl. Physiol. 113(4), 1043–1057 (2013)

    Article  Google Scholar 

  55. Sala, M., Cunzolo, P., Barrettino, D.: Body sensor network for posturometric studies. In: Proceedings of 2014 IEEE International Conference on Instrumentation and Measurement Technology (I2MTC) , pp. 536–541. IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sendoa Rojas-Lertxundi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rojas-Lertxundi, S., Fernández-López, J.R., Huerta, S., Garía Bringas, P. (2015). Motion Capture Systems for Jump Analysis. In: Onieva, E., Santos, I., Osaba, E., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2015. Lecture Notes in Computer Science(), vol 9121. Springer, Cham. https://doi.org/10.1007/978-3-319-19644-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19644-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19643-5

  • Online ISBN: 978-3-319-19644-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics