Advertisement

Construction of Functional Brain Connectivity Networks

  • Ricardo MagalhãesEmail author
  • Paulo Marques
  • Telma Veloso
  • José Miguel Soares
  • Nuno Sousa
  • Victor Alves
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 373)

Abstract

Graph theory and the study of complex networks have, over the last decade, received increasing attention from the neuroscience research community. It allows for the description of the brain as a full network of connections, a connectome, as well as for the quantitative characterization of its topological properties. Still, there is a clear lack of standard procedures for building these networks. In this work we describe a specifically designed full workflow for the pre-processing of resting state functional Magnetic Resonance Imaging (rs-fMRI) data and connectome. The proposed workflow focuses on the removal of confound data, the minimization of resampling effects and increasing subject specificity. It is implemented using open source software and libraries through shell and python scripting, allowing its easy integration into other systems such as BrainCAT. With this work we provide the neuroscience research community with a standardized framework for the construction of functional connectomes, simplifying the interpretation and comparison of different studies.

Keywords

Rs-fMRI Graph Theory Connectome Python Shell scripting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sporns, O.: From simple graphs to the connectome: networks in neuroimaging. NeuroImage 62(2), 881–886 (2012), doi:10.1016/j.neuroimage.2011.08.085CrossRefGoogle Scholar
  2. 2.
    Gross, J.L., Yellen, J.: Graph Theory and Its Applications. Chapman & Hall/CRC (2006)Google Scholar
  3. 3.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience 10(3), 186–198 (2009), doi:10.1038/nrn2575CrossRefGoogle Scholar
  4. 4.
    Bullmore, E.T., Bassett, D.S.: Brain graphs: graphical models of the human brain connectome. Annual Review of Clinical Psychology 7, 113–140 (2011), doi:10.1146/annurev-clinpsy-040510-143934CrossRefGoogle Scholar
  5. 5.
    Penny, W.D., Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E.: Statistical parametric mapping: the analysis of functional brain images: the analysis of functional brain images. Academic Press (2011)Google Scholar
  6. 6.
    Cox, R.W.: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, An International Journal 29(3), 162–173 (1996)CrossRefGoogle Scholar
  7. 7.
    Cox, R.W.: AFNI: what a long strange trip it’s been. NeuroImage 62(2), 743–747 (2012), doi:10.1016/j.neuroimage.2011.08.056CrossRefGoogle Scholar
  8. 8.
    Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, S208–S219 (2004)CrossRefGoogle Scholar
  9. 9.
    Song, X.W., Dong, Z.Y., Long, X.Y., Li, S.F., Zuo, X.N., Zhu, C.Z., He, Y., Yan, C.G., Zang, Y.F.: REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PloS One 6(9), e25031 (2011), doi:10.1371/journal.pone.0025031CrossRefGoogle Scholar
  10. 10.
    Marques, P., Soares, J.M., Alves, V., Sousa, N.: BrainCAT - a tool for automated and combined functional magnetic resonance imaging and diffusion tensor imaging brain connectivity analysis. Frontiers in Human Neuroscience 7, 794 (2013), doi:10.3389/fnhum.2013.00794CrossRefGoogle Scholar
  11. 11.
    Magalhaes, R., Marques, P., Soares, J., Alves, V., Sousa, N.: The Impact of Normalization and Segmentation on Resting-State Brain Networks. Brain Connectivity (2014), doi:10.1089/brain.2014.0292Google Scholar
  12. 12.
    Fischl, B.: FreeSurfer. NeuroImage 62(2), 774–781 (2012), doi:10.1016/j.neuroimage.2012.01.021CrossRefGoogle Scholar
  13. 13.
    Whitfield-Gabrieli, S., Nieto-Castanon, A.: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity 2(3), 125–141 (2012), doi:10.1089/brain.2012.0073CrossRefGoogle Scholar
  14. 14.
    Millman, K.J., Brett, M.: Analysis of functional magnetic resonance imaging in Python. Computing in Science & Engineering 9(3), 52–55 (2007)CrossRefGoogle Scholar
  15. 15.
    Behzadi, Y., Restom, K., Liau, J., Liu, T.T.: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37(1), 90–101 (2007), doi:10.1016/j.neuroimage.2007.04.042CrossRefGoogle Scholar
  16. 16.
    Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E.: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59(3), 2142–2154 (2012), doi:10.1016/j.neuroimage.2011.10.018CrossRefGoogle Scholar
  17. 17.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3), 1059–1069 (2010), doi:10.1016/j.neuroimage.2009.10.003CrossRefGoogle Scholar
  18. 18.
    Xia, M., Wang, J., He, Y.: BrainNet Viewer: a network visualization tool for human brain connectomics. PloS One 8(7), e68910 (2013), doi:10.1371/journal.pone.0068910CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ricardo Magalhães
    • 1
    • 2
    • 3
    Email author
  • Paulo Marques
    • 1
    • 2
    • 3
  • Telma Veloso
    • 4
  • José Miguel Soares
    • 1
    • 2
    • 3
  • Nuno Sousa
    • 1
    • 2
    • 3
  • Victor Alves
    • 4
  1. 1.Life and Health Sciences Research Institute (ICVS), School of Health SciencesUniversity of MinhoGuimaraesPortugal
  2. 2.ICVS/3B’s - PT Government Associate LaboratoryBraga/GuimarãesPortugal
  3. 3.Clinical Academic Center – BragaBragaPortugal
  4. 4.Department of InformaticsUniversity of MinhoBragaPortugal

Personalised recommendations