Advertisement

Design of a Semantic Lexicon Affective Applied to an Analysis Model Emotions for Teaching Evaluation

  • Gutiérrez GuadalupeEmail author
  • Margain Lourdes
  • Padilla Alejandro
  • Canúl-Reich Juana
  • Ponce Julio
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 373)

Abstract

There is an exponential interest by companies and researchers to identify the emotions that the users can express on their comments in different social media, for this reason the sentiment analysis has turned in one of the most researches on Natural Language Processing area with the purpose of creating resources as the lexical to do this homework. However, due to the variety of areas and contexts it is necessary to create or adequate lexical that allows to get the desired results. This work presents the basis for the development of Affective Semantic Lexicon. For the development of the lexicon is considered a grammatical lexicon and a graphic lexicon that will be evaluated then, be implement on a Sentiment Analysis Model applied to Professors’ Assessments of Higher Education Institutions.

Keywords

Affective semantic lexicon model sentiment analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bing, L.: Sentiment Analysis and Opinion Mining (Synthesis Lectures on Human Language Technologies). Morgan & Claypool Publishers (2012) ISBN-13: 978-1608458844Google Scholar
  2. 2.
    Fernández, D.: El nivel léxico-gramatical y su interacción con el nivel discursivo semántico en la elaboración de métodos de trabajo en el análisis del discurso. Boletín Millares Carlo, núm. 27. Centro Asociado UNED. Las Palmas de Gran Canaria (2008)Google Scholar
  3. 3.
    Hobbs, J., Gordon, A.: The Deep Lexical Semantics of Emotions. In: Affective Computing and Sentiment Analysis. Text, Speech and Language Technology, vol. 45. Springer Science+Business Media (2011)Google Scholar
  4. 4.
    Baca, Y.: Impacto de la ironía en la minería de opiniones basada en un léxico afectivo. Universidad Politénica de Valencia (2014)Google Scholar
  5. 5.
    Guerini, M., Gatti, L., Turchi, M.: Sentiment analysis: How to derive prior polarities from sentiwordnet. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1259–1269 (2013)Google Scholar
  6. 6.
    Díaz, I.: Detección de afectividad en texto en español basada en el contexto lingüístico para síntesis de voz. Tesis Doctoral. Instituto Politécnico Nacional, México (2013)Google Scholar
  7. 7.
    Miller, G.A.: WordNet: A Lexical Database for English. Communications of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  8. 8.
    Carrillo de Albornoz, J., Plaza, L., Gervás, P.: SentiSense: An easily scalable conceptbased affective lexicon for Sentiment Analysis. In: The 8th International Conference on Language Resources and Evaluation, LREC 2012 (2012)Google Scholar
  9. 9.
    Strapparava, C., Mihalcea, R.: Annotating and Identifying Emotions in Text. In: Armano, G., de Gemmis, M., Semeraro, G., Vargiu, E. (eds.) Intelligent Information Access. SCI, vol. 301, pp. 21–38. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Banea, C., Mihalcea, R., Wiebe, J.: Sense-level Subjectivity in a Multilingual Setting. In: Proceedings of the IJCNLP Workshop on Sentiment Analysis Where AI Meets Psychology, Chiang Mai, Thailand (2011)Google Scholar
  11. 11.
    Sidorov, G., et al.: Empirical Study of Machine Learning Based Approach for Opinion Mining in Tweets. In: Batyrshin, I., González Mendoza, M. (eds.) MICAI 2012, Part I. LNCS, vol. 7629, pp. 1–14. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Mora, M.: Descripción del Método de Investigación Conceptual, Reporte técnico 2003-01. Universidad Autónoma de Aguascalientes (2003)Google Scholar
  13. 13.
    Padró, L., Stanilovsky, E.: FreeLing 3.0: Towards Wider Multilinguality. In: Proceedings fo the Language Resources and Evaluation Conference (LREC 2012). ELRA, Estambul (2012)Google Scholar
  14. 14.
    Ortigosa, A., Martín, J., Carro, R.: Sentiment analysis in Facebook and its application to e-learning. Computers in Human Behavior 31, 527–541 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gutiérrez Guadalupe
    • 1
    • 2
    Email author
  • Margain Lourdes
    • 1
  • Padilla Alejandro
    • 3
  • Canúl-Reich Juana
    • 2
  • Ponce Julio
    • 3
  1. 1.Universidad Politécnica de AguascalientesAguascalientesMexico
  2. 2.Universidad Juárez Autónoma de TabascoAguascalientesMexico
  3. 3.Universidad Autónoma de AguascalientesVillahermosaMexico

Personalised recommendations