A Comparative Study of the Dynamic Matrix Controller Tuning by Evolutionary Computation

  • Gustavo Maia de Almeida
  • Marco Antonio de S.L. Cuadro
  • Rogério Passos Pereira Amaral
  • José Leandro F. Salles
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 373)


The Dynamic Matrix Control (DMC) Algorithm is a control method widely applied to industrial processes. Evolutionary Computation (EP) is a vibrant area of investigation, with some of the least widely known approaches being Genetic Algorithm (GA), Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) all of which can be used in optimisation problem. This work make a comparative study of the effectiveness of the three methods to optimize the tuning parameters of the Dynamic Matrix Controller for SISO (single-input single-output) and MIMO (multi-input multi-output) linear dynamical systems with constraints.


Evolutionary Computation Genetic Algorithm Ant Colony Optimization Particle Swarm Optimization Dynamic Matrix Controller 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Camacho, E.F., Bordons, C.: Model Predictive Control, 2nd edn. Springer (2000)Google Scholar
  2. 2.
    Maciejowski, J.: Predictive Control with Constraints. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  3. 3.
    Murath, P.R., Mellichamp, D.A., Seborg, D.E.: Predictive Controller Design for Single Input / Single Output System. Ind. Eng. Chem. Res. 27 (1998)Google Scholar
  4. 4.
    Rawlings, J., Muske, K.: The Stability of Constraints Recedings Horizon Control. IEEE Trans. Autom. Control 38 (1993)Google Scholar
  5. 5.
    Almeida, G.M., Salles, J.L.F., Filho, J.D.: Using Genetic Algorithm for tuning the parameters of Generalized Predictive Control. In: VII Conferéncia Internacional de Aplicaçöes Industriais INDUSCON (2006)Google Scholar
  6. 6.
    Almeida, G.M.: Controle Preditivo Sintonizado via Algoritmo Genético Aplicado em Processos Siderúrgicos. Tese de Doutorado, Universidade Federal do Espírito Santo (2011)Google Scholar
  7. 7.
    Coelho, C.A., Lamont, G., van Veldhuizen, D.: Evolutionary algorithms for solving multi-objective problems. Genetic and Evolutionary Computation. Springer (2007)Google Scholar
  8. 8.
    Coelho, C.A.: Constraint-handling tecniques used with evolutionary computation. In: Proc. 14th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO (2012)Google Scholar
  9. 9.
    Dougherty, D., Cooper, D.J.: Tunning Guidelines of a Dynamic Matrix Controller for Integrating (Non-Self-Regulating) Processes. Ind. Eng. Chem. Res. 42 (2003)Google Scholar
  10. 10.
    Garriga, J.L., Soroush, M.: Model Predictive Control Tuning Methods: A Review Processes. Ind. Eng. Chem. Res. (2010)Google Scholar
  11. 11.
    Serapião, A.B.S.: Fundamentos de Otimização por Inteligência de Enxames: Uma Visão Geral. Revista de Controle & Automação 20 (2009)Google Scholar
  12. 12.
    Hsiao, Y.T., Chuang, C.L., Chien, C.C.: Ant Colony Optimization for Designing of PID Controllers. In: IEEE International Symposium on Computer Aided Control Systems Design (2004)Google Scholar
  13. 13.
    Nagaraj, B., Murugananth, N.: A Comparative Study of PID Controller Tuning Using GA, EP, PSO and ACO. In: IEEE International Conference on Communication Control and Computing Technologies, ICCCCT (2010)Google Scholar
  14. 14.
    Chiha, I., Liouane, N., Borne, P.: Tuning PID Controller Using Multiobjective Ant Colony Optimization. Applied Computacional Intelligence and Soft Computing (2012)Google Scholar
  15. 15.
    Rao, S.S.: Engineering Optimization Theory and Practice, 4th edn. John Wiley & Sons Inc. (2009)Google Scholar
  16. 16.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transaction on System, Man, and Cybernetics Agents Part B 26 (1993)Google Scholar
  17. 17.
    Nasri, M., Nezamabadi-pour, H., Maghfoori, M.: A PSO-Based Optimum Design of PID Controller for a Linear Brushless DC Motor. World Academy of Science, Engineering and Technology 26 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gustavo Maia de Almeida
    • 1
  • Marco Antonio de S.L. Cuadro
    • 1
  • Rogério Passos Pereira Amaral
    • 1
  • José Leandro F. Salles
    • 2
  1. 1.Instituto Federal do Espírito SantoCoordenadoria de Automação IndustrialSerraBrasil
  2. 2.Departamento de Engenharia ElétricaUniversidade Federal do Espírito SantoVitóriaBrasil

Personalised recommendations