Advertisement

Hierarchical Multi-label Classification Problems: An LCS Approach

  • Luiz Melo RomãoEmail author
  • Julio César Nievola
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 373)

Abstract

Traditional classification tasks deal with assigning instances to a single label. However, some real world databases classes are structured in a hierarchy and its instances can have their classes associated with two or more paths in the hierarchical structure. In this case, such situations are referred as hierarchical multi-label classification problems. The purpose of this paper is to explore the concept of hierarchical multi-label classification problems and present a solution based on Learning Classifier Systems (LCS) to solve this kind of problem. The Hierarchical Learning Classifier System Multi-label (HLCS-Multi) proposed, presents a comprehensive solution to hierarchical multi-label classification problems building a global classifier to predict all classes in the application domain.

Keywords

Hierarchical Multi-label Classification Problems Learning Classifier Systems Protein Function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vateekul, P.: Hierarchical Multi-Label Classification: Going Beyond Generalization Trees. Open Access Dissertations, Paper 723 (2012)Google Scholar
  2. 2.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)Google Scholar
  3. 3.
    Urbanowicz, R.J., Moore, J.H.: Learning classifier systems: a complete introduction, review, and roadmap. Journal Artif. Evol. App., 1:1–1:25 (2009)Google Scholar
  4. 4.
    Alaydie, N., Reddy, C.K., Fotouhi, F.: Exploiting Label Dependency for Hierarchical Multi-label Classification. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012, Part I. LNCS, vol. 7301, pp. 294–305. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Romão, L.M., Nievola, J.C.: Hierarchical Classification of Gene Ontology with Learning Classifier Systems. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.) IBERAMIA 2012. LNCS, vol. 7637, pp. 120–129. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for hierarchical multi-label classification. Mach. Learn. 73(2), 185–214 (2008)Google Scholar
  7. 7.
    Kiritchenko, S., Matwin, S., Fazel, A.F.: Functional Annotation of Genes Using Hierarchical Text Categorization. In: Proceedings of BioLINK SIG: Linking Literature, Information and Knowledge for Biology (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Departamento de InformáticaUniversidade da Região de JoinvilleJoinvilleBrasil
  2. 2.Pontifícia Universidade Católica do Paraná, PPGIACuritibaBrasil

Personalised recommendations