Skip to main content

On the Bias of the SIR Filter in Parameter Estimation of the Dynamics Process of State Space Models

  • Conference paper
Distributed Computing and Artificial Intelligence, 12th International Conference

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 373))

  • 1149 Accesses

Abstract

As a popular nonlinear estimation tool, the sampling importance resampling (SIR) filter has been applied with the expectation–maximization (EM) principle, including the typical maximum a posteriori (MAP) estimation and maximum likelihood (ML) estimation, for estimating the parameters of the state space model (SSM). This paper concentrates on an inevitable bias existing in the EM-SIR filter for estimating the dynamics process of the SSM. It is analyzed that the root reason for the bias is the sample impoverishment caused by the resampling procedure employed in the filter. A process noise simulated for the particle propagation that is larger than the real noise involved with the true state will be helpful to counteract sample impoverishment, thereby providing better filtering result. Correspondingly, the EM-SIR filter tends to yield a biased (larger-than-the-truth) estimate of the process noise if it is unknown and needs to be estimated. The bias is elaborated via a straightforward roughening approach by means of both qualitative logical deduction and quantitative numerical simulation. However, it seems hard to fully remove this bias in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Storvik, G.: Particle filter for state-space models with the presence of unknown static parameters. IEEE Transactions on Signal Processing 50(2), 281–289 (2002)

    Article  Google Scholar 

  2. Schön, T.B., Wills, A., Ninness, B.: identification of nonlinear state-space models. Automatica 47(1), 39–49 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Doucet, A., Tadic, V.B.: Parameter estimation in general state-space models using particle methods. Annals of the Institute of Statistical Mathematics 55, 409–422 (2003)

    MATH  MathSciNet  Google Scholar 

  4. Yildirim, S., Jiang, L., Singh, S.S., Dean, T.A.: Calibrating the Gaussian multi-target tracking model. Statistics and Computing, 1–14 (2014)

    Google Scholar 

  5. Dean, T.A., Singh, S.S., Jasra, A., Peters, G.W.: Parameter estimation for hidden Markov models with intractable likelihoods. Scand. J. Statist. 41, 970–987 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lundquist, C., Karlsson, R., Ozkan, E., Gustafsson, F.: Tire radii estimation using a marginalized particle filter. IEEE Transactions on Intelligent Transportation Systems 15(2), 663–672 (2014)

    Article  Google Scholar 

  7. Zikmundová, M., Helisová, K.S., Beneš, V.: On the use of particle Markov Chain Monte Carlo in parameter estimation of space-time interacting discs. Methodology and Computing in Applied Probability 16(2), 451–463 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Andrieu, C., Doucet, A., Tadic, V.B.: Online parameter estimation in general state-space models. In: Proc. IEEE CDC/ECC, Seville, Spain, pp. 332–337 (2005)

    Google Scholar 

  9. Poyiadjis, G., Doucet, A., Singh, S.S.: Parameter approximations of the score and observed information matrix in state space models with application to parameter estimation. Biometrika 98, 65–80 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kantas, N., Doucet, A., Singh, S.S., Maciejowski, J.M., Chopin, N.: On particle methods for parameter estimation in state-space models. Statistical Science (2015)

    Google Scholar 

  11. Olsson, J., Cappe, O., Douc, R., Moulines, E.: SMC Smoothing with application to parameter estimation in nonlinear state-space models. Bernoulli 14(1), 155–179 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Li, T., Sun, S., Sattar, T.P., Corchado, J.M.: Fight sample degeneracy and impoverishment in particle filters: A review of intelligent approaches. Expert Systems with Applications 41(8), 3944–3954 (2014)

    Article  Google Scholar 

  13. Li, T., Bolic, M., Djuric, P.: Resampling methods for particle filtering, IEEE Signal Processing Magazine (to appear, May 2015), doi:10.1109/MSP.2014.2330626

    Google Scholar 

  14. Poyiadjis, G., Doucet, A., Singh, S.S.: Maximum likelihood parameter estimation in general state-space models using particle methods. In: Proc. American Stat. Assoc. (2005)

    Google Scholar 

  15. Hong, M., Bugallo, M.F., Djurić, P.M.: Joint model selection and parameter estimation by population Monte Carlo simulation. Journal of Selected Topics in Signal Processing 4(3), 526–539 (2010)

    Article  Google Scholar 

  16. Míguez, J., Crisan, D., Djurić, P.M.: On the use of sequential Monte Carlo methods for maximum a posteriori sequence estimation and stochastic global optimization. Statistics and Computing 23(1), 91–107 (2013)

    Article  MathSciNet  Google Scholar 

  17. Liu, J., West, M.: Combined parameters and state estimation in simulation based filtering. In: Doucet, A., de Freitas, N., Gordon, N. (eds.) Sequential Monte Carlo Methods in Practice, pp. 197–223. Springer, New York (2001)

    Chapter  Google Scholar 

  18. Carvalho, C.M., Johannes, M., Lopes, H.F., Polson, N.: Particle learning and smoothing. Statistical Science 25(1), 88–106 (2010)

    Article  MathSciNet  Google Scholar 

  19. Lopes, H.F., Tsay, R.S.: Particle filters and Bayesian inference in financial econometrics. J. Forecasting 30, 168–209 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Li, T., Sattar, T.P., Han, Q., Sun, S.: Roughening methods to prevent sample impoverishment in the particle PHD filter. In: 16th International Conference on Information Fusion, Istanbul, Turkey, July 10-12 (2013)

    Google Scholar 

  21. Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F Radar Signal Processing 140(2), 107–113 (1993)

    Article  Google Scholar 

  22. Fulop, A., Li, J.: Efficient Learning via Simulation: A marginalized resample-move approach. Journal of Econometrics 176, 146–161 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Li, T., Corchado, J.M., Bajo, J., Sun, S., De Paz, J.F.: Do we always need a filter, arXiv:1408.4636 [stat.AP]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiancheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, T., RodrĂ­guez, S., Bajo, J., Corchado, J.M., Sun, S. (2015). On the Bias of the SIR Filter in Parameter Estimation of the Dynamics Process of State Space Models. In: Omatu, S., et al. Distributed Computing and Artificial Intelligence, 12th International Conference. Advances in Intelligent Systems and Computing, vol 373. Springer, Cham. https://doi.org/10.1007/978-3-319-19638-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19638-1_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19637-4

  • Online ISBN: 978-3-319-19638-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics