Skip to main content

Abstract

This paper introduces a distributed multiagent system architecture for multimodal emotion identification, which is based on simultaneous analysis of physiological parameters from wearable devices, human behaviors and activities, and facial micro-expressions. Wearable devices are equipped with electrodermal activity, electrocardiogram, heart rate, and skin temperature sensor agents. Facial expressions are monitored by a vision agent installed at the height of the human’s head. Also, the activity of the user is monitored by a second vision agent mounted overhead. The emotion is refined as a cooperative decision taken at a central agent node denominated “Central Emotion Detection Node” from the local decision offered by the three agent nodes called “Face Expression Analysis Node”, “Behavior Analysis Node” and “Physiological Data Analysis Node”. This way, the emotion identification results are outperformed through an intelligent fuzzy-based decision making technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fernández-Caballero, A., Latorre, J.M., Pastor, J.M., Fernández-Sotos, A.: Improvement of the elderly quality of life and care through smart emotion regulation. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 348–355. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  2. Castillo, J.C., Fernández-Caballero, A., Castro-González, Á., Salichs, M.A., López, M.T.: A framework for recognizing and regulating emotions in the elderly. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 320–327. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  3. Darwin, C.R.: The Expression of the Emotions in Man and Animals. London, John Murray (1872)

    Book  Google Scholar 

  4. Karg, M., Samadani, A., Gorbet, R., Kuhnlenz, K., Hoey, J., Kulic, D.: Body movements for affective expression: a survey of automatic recognition and generation. IEEE Transactions on Affective Computing 4, 341–359 (2013)

    Article  Google Scholar 

  5. Picard, R.W.: Affective computing: challenges. International Journal of Human-Computer Studies 59, 55–64 (2003)

    Article  Google Scholar 

  6. Tao, J., Tan, T.: Affective computing: a review. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII 2005. LNCS, vol. 3784, pp. 981–995. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Petrushin, V.A.: Emotion recognition in speech signal: experimental study, development, and application. In: 6th International Conference of Spoken Language Processing, pp. 222–225 (2000)

    Google Scholar 

  8. Kim, K.H., Bang, S.W., Kim, S.R.: Emotion recognition system using short-term monitoring of physiological signals. Medical and Biological Engineering and Computing 42, 419–427 (2004)

    Google Scholar 

  9. Murugappan, M.: Electromyogram signal based human emotion classification using KNN and LDA. In: 2011 IEEE International Conference on System Engineering and Technology, pp. 106–110 (2011)

    Google Scholar 

  10. Bänziger, T., Grandjean, D., Scherer, K.R.: Emotion recognition from expressions in face, voice, and body: the multimodal emotion recognition test (MERT). Emotion 9, 691–704 (2009)

    Article  Google Scholar 

  11. Picard, R.W.: Emotion research by the people, for the people. Emotion Review 2, 250–254 (2010)

    Article  Google Scholar 

  12. Kukolja, D., Popovic, S., Horvat, M., Kovac, B., Cosic, K.: Comparative analysis of emotion estimation methods based on physiological measurements for real-time applications. International Journal of Human-Computer Studies 72, 717–727 (2014)

    Article  Google Scholar 

  13. Felisberto, F., Fdez.-Riverola, F., Pereira, A.: A ubiquitous and low-cost solution for movement monitoring and accident detection based on sensor fusion. Sensors 14, 8961–8983 (2014)

    Article  Google Scholar 

  14. Fernandez, R.: A Computational Model for the Automatic Recognition of Affect in Speech. Massachusetts Institute of Technology (2004)

    Google Scholar 

  15. Ambady, N., Rosenthal, R.: Thin slices of expressive behavior as predictors of interpersonal consequences: a meta-analysis. Psychological Bulletin 111, 256–274 (1992)

    Article  Google Scholar 

  16. Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 39–58 (2009)

    Article  Google Scholar 

  17. Lozano-Monasor, E., López, M.T., Fernández-Caballero, A., Vigo-Bustos, F.: Facial expression recognition from webcam based on active shape models and support vector machines. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 147–154. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  18. Ekman, P., Friesen, W.V., O’Sullivan, M., Chan, A., Diacoyanni-Tarlatzis, I., Heider, K., Tzavaras, A.: Universals and cultural differences in the judgment of facial expressions of emotion. Journal of Personality and Social Psychology 53, 712–717 (1987)

    Article  Google Scholar 

  19. Mauss, I.B., Levenson, R.W., McCarter, L., Wilhelm, F.H., Gross, J.J.: The tie that binds? Coherence among emotion experience, behavior, and physiology. Emotion 5, 175–190 (2005)

    Article  Google Scholar 

  20. Van Galen, G.P., Müller, M.L., Meulenbroek, R.G., Van Gemmert, A.W.: Forearm EMG response activity during motor performance in individuals prone to increased stress reactivity. American Journal of Industrial Medicine 41, 406–419 (2002)

    Article  Google Scholar 

  21. Coombes, S.A., Cauraugh, J.H., Janelle, C.M.: Emotional state and initiating cue alter central and peripheral motor processes. Emotion 7, 275–284 (2007)

    Article  Google Scholar 

  22. Stemmler, G.: The autonomic differentiation of emotions revisited: convergent and discriminant validation. Psychophysiology 26, 617–632 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sokolova, M.V., Fernández-Caballero, A., López, M.T., Martínez-Rodrigo, A., Zangróniz, R., Pastor, J.M. (2015). A Distributed Architecture for Multimodal Emotion Identification. In: Bajo, J., et al. Trends in Practical Applications of Agents, Multi-Agent Systems and Sustainability. Advances in Intelligent Systems and Computing, vol 372. Springer, Cham. https://doi.org/10.1007/978-3-319-19629-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19629-9_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19628-2

  • Online ISBN: 978-3-319-19629-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics