Skip to main content

Adding T1 Mapping and Extracellular Volume Fraction for Myocardial Fibrosis Assessment: Implications for Cardiovascular Risk Assessment

  • Chapter
Molecular and Multimodality Imaging in Cardiovascular Disease

Abstract

“T1 mapping” and “ECV mapping” techniques offer clinicians and researchers new opportunities to quantify important changes in the human myocardium such as myocardial fibrosis. These cardiovascular magnetic resonance (CMR) techniques employ “native T1” (i.e., without administration of contrast) and “extracellular volume fraction (ECV) measures.” These novel parameters can facilitate diagnosis of disease as well as associated prognosis since these quantitative measures depict the disease severity spectrum beyond its mere presence or absence. As such, these tools may enable the clinician to identify vulnerable patients and potentially improve outcomes by individualizing therapy and thus match the right treatment to the right patient. Clinicians now can possess new tools to detect focal and diffuse derangements in myocardial structure occurring in cardiac disease that can be otherwise difficult to detect. Fundamentally, increased ECV generally reflects expansion of the interstitial compartment (which includes the myocardial vasculature), whereas native T1 alterations may occur with processes affecting the myocyte or interstitium or both. These measurements complement the traditional functional and geometric surrogates of vulnerability such as left ventricular ejection fraction and volumes and mass. Increased understanding of the role of the interstitium in pathophysiology may facilitate new paradigms of cardiac vulnerability. Various aspects of T1 mapping and ECV have been reviewed in several previous publications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedrich MG. There is more than shape and function. J Am Coll Cardiol. 2008;52:1581–3.

    Article  PubMed  Google Scholar 

  2. Schelbert EB, Fonarow GC, Bonow RO, Butler J, Gheorghiade M. Therapeutic targets in heart failure: refocusing on the myocardial interstitium. J Am Coll Cardiol. 2014;63:2188–98.

    Article  PubMed  Google Scholar 

  3. Kellman P, Wilson JR, Xue H, et al. Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson. 2012;14:64.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Treibel TA, White SK, Moon JC. Myocardial tissue characterization: histological and pathophysiological correlation. Curr Cardiovasc Imaging Rep. 2014;7:9254.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Moon JC, Messroghli DR, Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Salerno M, Kramer CM. Advances in parametric mapping with CMR imaging. JACC Cardiovasc Imaging. 2013;6:806–22.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Ambale-Venkatesh B, Lima JA. Cardiac MRI: a central prognostic tool in myocardial fibrosis. Nat Rev Cardiol. 2014;12(1):18–29.

    Article  PubMed  CAS  Google Scholar 

  8. Maestrini V, Treibel TA, White SK, Fontana M, Moon JC. T1 mapping for characterization of intracellular and extracellular myocardial diseases in heart failure. Curr Cardiovasc Imaging Rep. 2014;7:9287.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Jellis CL, Kwon DH. Myocardial T1 mapping: modalities and clinical applications. Cardiovasc Diagn Ther. 2014;4:126–37.

    PubMed Central  PubMed  Google Scholar 

  10. Sado DM, Flett AS, Banypersad SM, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart. 2012;98:1436–41.

    Article  PubMed  Google Scholar 

  11. Rogers T, Yap ML, Puntmann VO. Myocardial T1 mapping: a non-invasive alternative to tissue diagnosis? Eur Heart J Cardiovasc Imaging. 2014;16(1):108–9.

    Article  PubMed  Google Scholar 

  12. Messroghli DM, Schelbert EB. Clinical Applications of Cardiac T1 Mapping. Radiology. 2015;in press.

    Google Scholar 

  13. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011;57:891–903.

    Article  PubMed  Google Scholar 

  14. h-Ici DO, Jeuthe S, Al-Wakeel N, et al. T1 mapping in ischaemic heart disease. Eur Heart J Cardiovasc Imaging. 2014;15:597–602.

    Article  PubMed  Google Scholar 

  15. Wong TC. Cardiovascular magnetic resonance imaging of myocardial interstitial expansion in hypertrophic cardiomyopathy. Curr Cardiovasc Imaging Rep. 2014;7:9267.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Ferreira VM, Piechnik SK, Dall'Armellina E, et al. Native T1-mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents. J Cardiovasc Magn Reson. 2014;16:36.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Ugander M, Bagi PS, Oki AJ, et al. Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging. 2012;5:596–603.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Messroghli DR, Niendorf T, Schulz-Menger J, Dietz R, Friedrich MG. T1 mapping in patients with acute myocardial infarction. J Cardiovasc Magn Reson. 2003;5:353–9.

    Article  PubMed  Google Scholar 

  19. Ferreira VM, Piechnik SK, Dall'armellina E, et al. T1-mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging. 2013;6(10):1048–58.

    Google Scholar 

  20. Ferreira VM, Piechnik SK, Dall'Armellina E, et al. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:42.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Mahmod M, Piechnik SK, Levelt E, et al. Adenosine stress native T1 mapping in severe aortic stenosis: evidence for a role of the intravascular compartment on myocardial T1 values. J Cardiovasc Magn Reson. 2014;16:92.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Bull S, White SK, Piechnik SK, et al. Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart. 2013;99:932–7.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Puntmann VO, Voigt T, Chen Z, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging. 2013;6:475–84.

    Article  PubMed  Google Scholar 

  24. Puntmann VO, D'Cruz D, Smith Z, et al. Native myocardial T1 mapping by cardiovascular magnetic resonance imaging in subclinical cardiomyopathy in patients with systemic lupus erythematosus. Circ Cardiovasc Imaging. 2013;6:295–301.

    Article  PubMed  Google Scholar 

  25. Fontana M, Banypersad SM, Treibel TA, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging. 2014;7(2):157–65.

    Article  PubMed  Google Scholar 

  26. Karamitsos TD, Piechnik SK, Banypersad SM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging. 2013;6:488–97.

    Article  PubMed  Google Scholar 

  27. Banypersad SM, Fontana M, Maestrini V, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J. 2014;36(4):244–51.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Thompson RB, Chow K, Khan A, et al. T1 mapping with CMR is highly sensitive for Fabry disease independent of hypertrophy and gender. Circ Cardiovasc Imaging. 2013;6(3):392–8.

    Article  Google Scholar 

  29. Thompson RB, Chow K, Khan A, et al. T1 mapping with CMR is highly sensitive for Fabry disease independent of hypertrophy and gender. Circ Cardiovasc Imaging. 2013;6(5):637–45.

    Article  PubMed  Google Scholar 

  30. Sado DM, Maestrini V, Piechnik SK, et al. Noncontrast myocardial T mapping using cardiovascular magnetic resonance for iron overload. J Magn Reson Imaging. 2014. doi:10.1002/jmri.24727.

    PubMed  Google Scholar 

  31. Rogers T, Dabir D, Mahmoud I, et al. Standardization of T1 measurements with MOLLI in differentiation between health and disease–the ConSept study. J Cardiovasc Magn Reson. 2013;15:78.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Modell B, Khan M, Darlison M, Westwood MA, Ingram D, Pennell DJ. Improved survival of thalassaemia major in the UK and relation to T2* cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2008;10:42.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Jerosch-Herold M, Sheridan DC, Kushner JD, et al. Cardiac magnetic resonance imaging of myocardial contrast uptake and blood flow in patients affected with idiopathic or familial dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2008;295:H1234–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Arheden H, Saeed M, Higgins CB, et al. Measurement of the distribution volume of gadopentetate dimeglumine at echo-planar MR imaging to quantify myocardial infarction: comparison with 99mTc-DTPA autoradiography in rats. Radiology. 1999;211:698–708.

    Article  CAS  PubMed  Google Scholar 

  35. Poole-Wilson PA. The intracellular pH, potassium and electrolyte content of heart muscle in acidosis and alkalosis. London: University of Cambridge; 1975.

    Google Scholar 

  36. Brading AF, Jones AW. Distribution and kinetics of CoEDTA in smooth muscle, and its use as an extracellular marker. J Physiol. 1969;200:387–401.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ugander M, Oki AJ, Hsu LY, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J. 2012;33:1268–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kellman P, Wilson JR, Xue H, Ugander M, Arai AE. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson. 2012;14:63.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Schelbert EB, Testa SM, Meier CG, et al. Myocardial extravascular extracellular volume fraction measurement by gadolinium cardiovascular magnetic resonance in humans: slow infusion versus bolus. J Cardiovasc Magn Reson. 2011;13:16.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Miller CA, Naish J, Bishop P, et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging. 2013;6(3):373–83.

    Article  PubMed  Google Scholar 

  41. Dabir D, Child N, Kalra A, et al. Reference values for healthy human myocardium using a T1 mapping methodology: results from the international T1 multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2014;16:69.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Coelho-Filho OR, Mongeon FP, Mitchell R, et al. The role of transcytolemmal water exchange in magnetic resonance measurements of diffuse myocardial fibrosis in hypertensive heart disease. Circ Cardiovasc Imaging. 2012;6(1):134–41.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Kawel N, Nacif M, Zavodni A, et al. T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3T for Gd-DTPA and Gd-BOPTA. J Cardiovasc Magn Reson. 2012;14:26.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Wong TC, Piehler K, Kang IA, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J. 2014;35:657–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Wong TC, Piehler K, Meier CG, et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation. 2012;126:1206–16.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Wong TC, Piehler KM, Kellman P, Schelbert EB. Extracellular matrix expansion is more strongly associated with cardiovascular outcomes than left ventricular mass. (Abstract). J Am Coll Cardiol. 2014;63:A986.

    Article  Google Scholar 

  47. Schelbert EB, Piehler KM, Zareba KM, et al. Extracellular matrix expansion in non-infarcted myocardium is associated with subsequent death, hospitalization for heart failure, or both across the ejection fraction spectrum (Abstract). J Am Coll Cardiol. 2014;63:A1007.

    Article  Google Scholar 

  48. Ghosn MG, Pickett S, Brunner G, et al. Association of myocardial extracellular volume and clinical outcome: a cardiac magnetic resonance study (Abstract). J Am Coll Cardiol. 2015;65:A1077.

    Article  Google Scholar 

  49. Flett AS, Hayward MP, Ashworth MT, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation. 2010;122:138–44.

    Article  PubMed  Google Scholar 

  50. Fontana M, White SK, Banypersad SM, et al. Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. J Cardiovasc Magn Reson. 2012;14:88.

    Article  PubMed Central  PubMed  Google Scholar 

  51. White SK, Sado DM, Fontana M, et al. T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc Imaging. 2013;6:955–62.

    Article  PubMed  Google Scholar 

  52. Aus dem Siepen F, Buss SJ, Messroghli D, et al. T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging. 2014;16(2):210–6.

    Article  PubMed  Google Scholar 

  53. Chin CW, Semple S, Malley T, et al. Optimization and comparison of myocardial T1 techniques at 3T in patients with aortic stenosis. Eur Heart J Cardiovasc Imaging. 2014;15:556–65.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Singh A, Horsfield MA, Bekele S, Khan J, Greiser A, McCann GP. Myocardial T1 and extracellular volume fraction measurement in asymptomatic patients with aortic stenosis: reproducibility and comparison with age-matched controls. Eur Heart J Cardiovasc Imaging. 2015.

    Google Scholar 

  55. Liu S, Han J, Nacif MS, et al. Diffuse myocardial fibrosis evaluation using cardiac magnetic resonance T1 mapping: sample size considerations for clinical trials. J Cardiovasc Magn Reson. 2012;14:90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Sibley CT, Noureldin RA, Gai N, et al. T1 Mapping in cardiomyopathy at cardiac MR: comparison with endomyocardial biopsy. Radiology. 2012;265:724–32.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Iles LM, Ellims AH, Llewellyn H, Hare JL, Kaye DM, McLean CA, Taylor AJ. Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur Heart J Cardiovasc Imaging. 2014;16(1):14–22.

    Article  PubMed  Google Scholar 

  58. Iles L, Pfluger H, Phrommintikul A, et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol. 2008;52:1574–80.

    Article  PubMed  Google Scholar 

  59. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18:1028–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Rockey DC, Bell PD, Hill JA. Fibrosis–a common pathway to organ injury and failure. N Engl J Med. 2015;372:1138–49.

    Article  CAS  PubMed  Google Scholar 

  61. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation. 1991;83:1849–65.

    Article  CAS  PubMed  Google Scholar 

  62. Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999;79:215–62.

    CAS  PubMed  Google Scholar 

  63. Mann DL, Barger PM, Burkhoff D. Myocardial recovery and the failing heart: myth, magic, or molecular target? J Am Coll Cardiol. 2012;60:2465–72.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2013;71(4):549–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Weber KT. Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol. 1989;13:1637–52.

    Article  CAS  PubMed  Google Scholar 

  66. Schwartzkopff B, Brehm M, Mundhenke M, Strauer BE. Repair of coronary arterioles after treatment with perindopril in hypertensive heart disease. Hypertension. 2000;36:220–5.

    Article  CAS  PubMed  Google Scholar 

  67. Brilla CG, Funck RC, Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000;102:1388–93.

    Article  CAS  PubMed  Google Scholar 

  68. Diez J, Querejeta R, Lopez B, Gonzalez A, Larman M, Martinez Ubago JL. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation. 2002;105:2512–7.

    Article  CAS  PubMed  Google Scholar 

  69. Izawa H, Murohara T, Nagata K, et al. Mineralocorticoid receptor antagonism ameliorates left ventricular diastolic dysfunction and myocardial fibrosis in mildly symptomatic patients with idiopathic dilated cardiomyopathy: a pilot study. Circulation. 2005;112:2940–5.

    CAS  PubMed  Google Scholar 

  70. Tamarappoo BK, John BT, Reinier K, et al. Vulnerable myocardial interstitium in patients with isolated left ventricular hypertrophy and sudden cardiac death: a postmortem histological evaluation. J Am Heart Assoc. 2012;1, e001511.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Zannad F, Alla F, Dousset B, Perez A, Pitt B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation. 2000;102:2700–6.

    Article  CAS  PubMed  Google Scholar 

  72. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342:145–53.

    Article  CAS  PubMed  Google Scholar 

  73. The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991;325:293–302.

    Article  Google Scholar 

  74. Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med. 1992; 327:669–77.

    Article  CAS  PubMed  Google Scholar 

  75. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341:709–17.

    Article  CAS  PubMed  Google Scholar 

  76. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21.

    Article  CAS  PubMed  Google Scholar 

  77. Pfeffer MA, McMurray JJ, Velazquez EJ, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med. 2003;349:1893–906.

    Article  CAS  PubMed  Google Scholar 

  78. Pfeffer MA, Claggett B, Assmann SF, et al. Regional variation in patients and outcomes in the treatment of preserved cardiac function heart failure with an aldosterone antagonist (TOPCAT) trial. Circulation. 2015;131:34–42.

    Article  CAS  PubMed  Google Scholar 

  79. Patel A, MacMahon S, Chalmers J, et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet. 2007;370:829–40.

    Article  CAS  PubMed  Google Scholar 

  80. Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet. 2000;355:253–9.

    Article  Google Scholar 

  81. Flett AS, Sado DM, Quarta G, et al. Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging. 2012;13:819–26.

    Article  PubMed  Google Scholar 

  82. van Hoeven KH, Factor SM. A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive-diabetic heart disease. Circulation. 1990;82:848–55.

    Article  PubMed  Google Scholar 

  83. Tanaka M, Fujiwara H, Onodera T, et al. Quantitative analysis of myocardial fibrosis in normals, hypertensive hearts, and hypertrophic cardiomyopathy. Br Heart J. 1986;55:575–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Beltrami CA, Finato N, Rocco M, et al. The cellular basis of dilated cardiomyopathy in humans. J Mol Cell Cardiol. 1995;27:291–305.

    Article  CAS  PubMed  Google Scholar 

  85. Rossi MA. Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J Hypertens. 1998;16:1031–41.

    Article  CAS  PubMed  Google Scholar 

  86. Schaper J, Mollnau H, Hein S, Scholz D, Münkel B, Devaux B. Interactions between cardiomyocytes and extracellular matrix in the failing human heart. Z Kardiol. 1995;84:33–8.

    PubMed  Google Scholar 

  87. Mongeon FP, Jerosch-Herold M, Coelho-Filho OR, Blankstein R, Falk RH, Kwong RY. Quantification of extracellular matrix expansion by CMR in infiltrative heart disease. JACC Cardiovasc Imaging. 2012;5:897–907.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Robbers LF, Baars EN, Brouwer WP, et al. T1 mapping shows increased extracellular matrix size in the myocardium due to amyloid depositions. Circ Cardiovasc Imaging. 2012;5:423–6.

    Article  PubMed  Google Scholar 

  89. Banypersad SM, Sado DM, Flett AS, et al. Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging. 2012;6:34–9.

    Article  PubMed  Google Scholar 

  90. Barison A, Aquaro GD, Pugliese NR, et al. Measurement of myocardial amyloid deposition in systemic amyloidosis: insights from cardiovascular magnetic resonance imaging. J Intern Med. 2014;277(5):605–14.

    Article  PubMed  Google Scholar 

  91. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100:1992–2002.

    Article  CAS  PubMed  Google Scholar 

  92. Broberg CS, Chugh SS, Conklin C, Sahn DJ, Jerosch-Herold M. Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease. Circ Cardiovasc Imaging. 2010;3:727–34.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Schalla S, Bekkers SC, Dennert R, et al. Replacement and reactive myocardial fibrosis in idiopathic dilated cardiomyopathy: comparison of magnetic resonance imaging with right ventricular biopsy. Eur J Heart Fail. 2010;12:227–31.

    Article  PubMed  Google Scholar 

  94. Kim RJ, Albert TS, Wible JH, et al. Performance of delayed-enhancement magnetic resonance imaging with gadoversetamide contrast for the detection and assessment of myocardial infarction: an international, multicenter, double-blinded, randomized trial. Circulation. 2008;117:629–37.

    Article  PubMed  Google Scholar 

  95. Schelbert EB, Hsu LY, Anderson SA, et al. Late gadolinium-enhancement cardiac magnetic resonance identifies postinfarction myocardial fibrosis and the border zone at the near cellular level in ex vivo rat heart. Circ Cardiovasc Imaging. 2010;3:743–52.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Kwong RY, Sattar H, Wu H, et al. Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation. 2008;118:1011–20.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Kwong RY, Chan AK, Brown KA, et al. Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation. 2006;113:2733–43.

    Article  PubMed  Google Scholar 

  98. Schelbert EB, Cao JJ, Sigurdsson S, et al. Prevalence and prognosis of unrecognized myocardial infarction determined by cardiac magnetic resonance in older adults. JAMA. 2012;308:890–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Hunold P, Schlosser T, Vogt FM, et al. Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between infarction scar and non-infarction-related disease. AJR Am J Roentgenol. 2005;184:1420–6.

    Article  PubMed  Google Scholar 

  100. Su MY, Lin LY, Tseng YH, et al. CMR-verified diffuse myocardial fibrosis is associated with diastolic dysfunction in HFpEF. JACC Cardiovasc Imaging. 2014;7:991–7.

    Article  PubMed  Google Scholar 

  101. Mascherbauer J, Marzluf BA, Tufaro C, et al. Cardiac magnetic resonance postcontrast T1 time is associated with outcome in patients with heart failure and preserved ejection fraction. Circ Cardiovasc Imaging. 2013;6:1056–65.

    Article  PubMed  Google Scholar 

  102. van Heerebeek L, Borbely A, Niessen HW, et al. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation. 2006;113:1966–73.

    Article  PubMed  Google Scholar 

  103. Liu CY, Chang Liu Y, Wu C, et al. Evaluation of age related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T mapping in the multi-ethnic study of atherosclerosis (MESA). J Am Coll Cardiol. 2013;62(14):1280–7.

    Article  PubMed  Google Scholar 

  104. Lee JJ, Liu S, Nacif MS, et al. Myocardial T1 and extracellular volume fraction mapping at 3 tesla. J Cardiovasc Magn Reson. 2011;13:75.

    Article  PubMed Central  PubMed  Google Scholar 

  105. Kellman P, Hansen MS. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson. 2014;16:2.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik B. Schelbert MD, MS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schelbert, E.B., Wong, T.C. (2015). Adding T1 Mapping and Extracellular Volume Fraction for Myocardial Fibrosis Assessment: Implications for Cardiovascular Risk Assessment. In: Schindler, T., George, R., Lima, J. (eds) Molecular and Multimodality Imaging in Cardiovascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-19611-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19611-4_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19610-7

  • Online ISBN: 978-3-319-19611-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics