Skip to main content

Concepts of PET, SPECT, and MRI in the Assessment of Myocardial Viability Leading to PET/MRI Application

  • Chapter
Molecular and Multimodality Imaging in Cardiovascular Disease

Abstract

The prevalence of heart failure is continuously rising in view of the increasingly elderly population and improved survival of acute coronary syndrome patients. Although heart failure can be related to various causes such as idiopathic cardiomyopathy, valvular disease, hypertensive, and diabetic heart disease, ischemic heart disease is the predominant cause of the majority of patients with heart failure symptoms. Exercise-induced and repetitive myocardial ischemia commonly induces cumulative myocardial stunning-hibernation that over time may manifest clinically as left ventricular dysfunction with heart failure symptoms. Stunning-hibernation myocardium may completely or partially restore its function in a substantial number of patients, in whom coronary flow is restored by interventional or surgical revascularization. The identification of stunning-hibernation myocardium, or ischemic compromised viable but dysfunctional myocardial regions, with imaging is critical for the clinical assessment of ischemic heart failure patients. There is a variety of cardiac imaging modalities to identify stunning-hibernation myocardium. This chapter emphasizes on the concepts of PET, SPECT, and MRI in the assessment of myocardial viability leading to the advantages of PET/MRI application. In addition, clinical determinants such as timely revascularization of ischemic, jeopardized but viable myocardium, effects of advanced stages of myocardial remodeling, ischemic conditioning, and the extent of left-ventricular dilation will be given considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ezekowitz JA, Kaul P, Bakal JA, Armstrong PW, Welsh RC, McAlister FA. Declining in-hospital mortality and increasing heart failure incidence in elderly patients with first myocardial infarction. J Am Coll Cardiol. 2009;53(1):13–20.

    PubMed  Google Scholar 

  2. Hunt SA, Abraham WT, Chin MH, et al. 2009 Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53(15):e1–90.

    PubMed  Google Scholar 

  3. Owens AT, Jessup M. The year in heart failure. J Am Coll Cardiol. 2012;60(5):359–68.

    PubMed  Google Scholar 

  4. Sahul ZH, Mukherjee R, Song J, et al. Targeted imaging of the spatial and temporal variation of matrix metalloproteinase activity in a porcine model of postinfarct remodeling: relationship to myocardial dysfunction. Circ Cardiovasc Imaging. 2011;4(4):381–91.

    PubMed Central  PubMed  Google Scholar 

  5. Shirani J, Dilsizian V. Imaging left ventricular remodeling: targeting the neurohumoral axis. Nat Clin Pract Cardiovasc Med. 2008;5 Suppl 2:S57–62.

    CAS  PubMed  Google Scholar 

  6. Ghosh N, Rimoldi OE, Beanlands RS, Camici PG. Assessment of myocardial ischaemia and viability: role of positron emission tomography. Eur Heart J. 2010;31(24):2984–95.

    PubMed  Google Scholar 

  7. Barnes E, Hall RJ, Dutka DP, Camici PG. Absolute blood flow and oxygen consumption in stunned myocardium in patients with coronary artery disease. J Am Coll Cardiol. 2002;39(3):420–7.

    PubMed  Google Scholar 

  8. Diamond GA, Forrester JS, deLuz PL, Wyatt HL, Swan HJ. Post-extrasystolic potentiation of ischemic myocardium by atrial stimulation. Am Heart J. 1978;95(2):204–9.

    CAS  PubMed  Google Scholar 

  9. Marshall RC, Tillisch JH, Phelps ME, et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation. 1983;67(4):766–78.

    CAS  PubMed  Google Scholar 

  10. Tillisch J, Brunken R, Marshall R, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med. 1986;314(14):884–8.

    CAS  PubMed  Google Scholar 

  11. Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation. 1985;72(6 Pt 2):V123–35.

    CAS  PubMed  Google Scholar 

  12. Canty Jr JM, Fallavollita JA. Hibernating myocardium. J Nucl Cardiol. 2005;12(1):104–19.

    PubMed  Google Scholar 

  13. Canty Jr JM, Fallavollita JA. Hibernating myocardium represents a primary downregulation of regional myocardial oxygen consumption distal to a critical coronary stenosis. Basic Res Cardiol. 1995;90(1):5–8.

    PubMed  Google Scholar 

  14. Canty Jr JM, Suzuki G. Myocardial perfusion and contraction in acute ischemia and chronic ischemic heart disease. J Mol Cell Cardiol. 2012;52(4):822–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Zhang X, Schindler TH, Prior JO, et al. Blood flow, flow reserve, and glucose utilization in viable and nonviable myocardium in patients with ischemic cardiomyopathy. Eur J Nucl Med Mol Imaging. 2013;40(4):532–41.

    CAS  PubMed  Google Scholar 

  16. Fallavollita JA, Perry BJ, Canty Jr JM. 18F-2-deoxyglucose deposition and regional flow in pigs with chronically dysfunctional myocardium. Evidence for transmural variations in chronic hibernating myocardium. Circulation. 1997;95(7):1900–9.

    CAS  PubMed  Google Scholar 

  17. Elsasser A, Muller KD, Skwara W, Bode C, Kubler W, Vogt AM. Severe energy deprivation of human hibernating myocardium as possible common pathomechanism of contractile dysfunction, structural degeneration and cell death. J Am Coll Cardiol. 2002;39(7):1189–98.

    PubMed  Google Scholar 

  18. Elsasser A, Vogt AM, Nef H, et al. Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death. J Am Coll Cardiol. 2004;43(12):2191–9.

    PubMed  Google Scholar 

  19. Elsasser A, Schlepper M, Klovekorn WP, et al. Hibernating myocardium: an incomplete adaptation to ischemia. Circulation. 1997;96(9):2920–31.

    CAS  PubMed  Google Scholar 

  20. Bax JJ, Schinkel AF, Boersma E, et al. Early versus delayed revascularization in patients with ischemic cardiomyopathy and substantial viability: impact on outcome. Circulation. 2003;108 Suppl 1:II39–42.

    PubMed  Google Scholar 

  21. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol. 2002;39(7):1151–8.

    PubMed  Google Scholar 

  22. Beanlands RS, Hendry PJ, Masters RG, deKemp RA, Woodend K, Ruddy TD. Delay in revascularization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocardium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation. 1998;98(19 Suppl):II51–6.

    CAS  PubMed  Google Scholar 

  23. Camici PG, Prasad SK, Rimoldi OE. Stunning, hibernation, and assessment of myocardial viability. Circulation. 2008;117(1):103–14.

    PubMed  Google Scholar 

  24. Dilsizian V, Rocco TP, Freedman NM, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med. 1990;323(3):141–6.

    CAS  PubMed  Google Scholar 

  25. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation. 1991;83(1):26–37.

    CAS  PubMed  Google Scholar 

  26. Rahimtoola SH. Hibernating myocardium has reduced blood flow at rest that increases with low-dose dobutamine. Circulation. 1996;94(12):3055–61.

    CAS  PubMed  Google Scholar 

  27. Rahimtoola SH. Clinical aspects of hibernating myocardium. J Mol Cell Cardiol. 1996;28(12):2397–401.

    CAS  PubMed  Google Scholar 

  28. Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol. 2007;32(7):375–410.

    PubMed  Google Scholar 

  29. Dilsizian V, Perrone-Filardi P, Arrighi JA, et al. Concordance and discordance between stress-redistribution-reinjection and rest-redistribution thallium imaging for assessing viable myocardium. Comparison with metabolic activity by positron emission tomography. Circulation. 1993;88(3):941–52.

    CAS  PubMed  Google Scholar 

  30. Berman DS, Kiat H, Friedman JD, et al. Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study. J Am Coll Cardiol. 1993;22(5):1455–64.

    CAS  PubMed  Google Scholar 

  31. Sciagra R, Bisi G, Santoro GM, et al. Comparison of baseline-nitrate technetium-99m sestamibi with rest-redistribution thallium-201 tomography in detecting viable hibernating myocardium and predicting postrevascularization recovery. J Am Coll Cardiol. 1997;30(2):384–91.

    CAS  PubMed  Google Scholar 

  32. Partington SL, Kwong RY, Dorbala S. Multimodality imaging in the assessment of myocardial viability. Heart Fail Rev. 2011;16(4):381–95.

    PubMed Central  PubMed  Google Scholar 

  33. Valenta I, Quercioli A, Ruddy T, Schindler TH. Assessment of myocardial viability after the STICH trial: still viable? Cardiovasc Med. 2013;16(11):289–98.

    Google Scholar 

  34. Brunken RC, Mody FV, Hawkins RA, Nienaber C, Phelps ME, Schelbert HR. Positron emission tomography detects metabolic viability in myocardium with persistent 24-hour single-photon emission computed tomography 201Tl defects. Circulation. 1992;86(5):1357–69.

    CAS  PubMed  Google Scholar 

  35. Di Carli MF. Myocardial viability assessment with PET and PET/CT. New York: Springer; 2007.

    Google Scholar 

  36. Auerbach MA, Schoder H, Hoh C, et al. Prevalence of myocardial viability as detected by positron emission tomography in patients with ischemic cardiomyopathy. Circulation. 1999;99(22):2921–6.

    CAS  PubMed  Google Scholar 

  37. Carrel T, Jenni R, Haubold-Reuter S, von Schulthess G, Pasic M, Turina M. Improvement of severely reduced left ventricular function after surgical revascularization in patients with preoperative myocardial infarction. Eur J Cardiothorac Surg. 1992;6(9):479–84.

    CAS  PubMed  Google Scholar 

  38. Di Carli MF, Asgarzadie F, Schelbert HR, et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation. 1995;92(12):3436–44.

    PubMed  Google Scholar 

  39. Di Carli MF, Davidson M, Little R, et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol. 1994;73(8):527–33.

    PubMed  Google Scholar 

  40. Lee KS, Marwick TH, Cook SA, et al. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation. 1994;90(6):2687–94.

    CAS  PubMed  Google Scholar 

  41. D'Egidio G, Nichol G, Williams KA, et al. Increasing benefit from revascularization is associated with increasing amounts of myocardial hibernation: a substudy of the PARR-2 trial. JACC Cardiovasc Imaging. 2009;2(9):1060–8.

    PubMed  Google Scholar 

  42. Beanlands RS, Nichol G, Huszti E, et al. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol. 2007;50(20):2002–12.

    PubMed  Google Scholar 

  43. Abraham A, Nichol G, Williams KA, et al. 18F-FDG PET imaging of myocardial viability in an experienced center with access to 18F-FDG and integration with clinical management teams: the Ottawa-FIVE substudy of the PARR 2 trial. J Nucl Med. 2010;51(4):567–74.

    PubMed  Google Scholar 

  44. Bonow RO, Maurer G, Lee KL, et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011;364(17):1617–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Rouleau JL, Bonow RO. An approach to the rational use of revascularization in heart failure patients. Can J Cardiol. 2014;30(3):281–7.

    PubMed  Google Scholar 

  46. Chareonthaitawee P, Gersh BJ, Panza JA. Is viability imaging still relevant in 2012? JACC Cardiovasc Imaging. 2012;5(5):550–8.

    PubMed  Google Scholar 

  47. Velazquez EJ. Does imaging-guided selection of patients with ischemic heart failure for high risk revascularization improve identification of those with the highest clinical benefit?: Myocardial imaging should not exclude patients with ischemic heart failure from coronary revascularization. Circ Cardiovasc Imaging. 2012;5(2):271–9; discussion 9.

    PubMed  Google Scholar 

  48. Mielniczuk LM, Beanlands RS. Does imaging-guided selection of patients with ischemic heart failure for high risk revascularization improve identification of those with the highest clinical benefit?: Imaging-guided selection of patients with ischemic heart failure for high-risk revascularization improves identification of those with the highest clinical benefit. Circ Cardiovasc Imaging. 2012;5(2):262–70; discussion 70.

    PubMed  Google Scholar 

  49. Tarakji KG, Brunken R, McCarthy PM, et al. Myocardial viability testing and the effect of early intervention in patients with advanced left ventricular systolic dysfunction. Circulation. 2006;113(2):230–7.

    PubMed  Google Scholar 

  50. Maruskova M, Gregor P, Bartunek J, Tintera J, Penicka M. Myocardial viability and cardiac dyssynchrony as strong predictors of perioperative mortality in high-risk patients with ischemic cardiomyopathy having coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2009;138(1):62–8.

    PubMed  Google Scholar 

  51. Schwarz ER, Schoendube FA, Kostin S, et al. Prolonged myocardial hibernation exacerbates cardiomyocyte degeneration and impairs recovery of function after revascularization. J Am Coll Cardiol. 1998;31(5):1018–26.

    CAS  PubMed  Google Scholar 

  52. Bax JJ, Schinkel AF, Boersma E, et al. Extensive left ventricular remodeling does not allow viable myocardium to improve in left ventricular ejection fraction after revascularization and is associated with worse long-term prognosis. Circulation. 2004;110(11 Suppl 1):II18–22.

    PubMed  Google Scholar 

  53. Vanoverschelde JL, Wijns W, Depre C, et al. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation. 1993;87(5):1513–23.

    CAS  PubMed  Google Scholar 

  54. Bonow RO. Contractile reserve and coronary blood flow reserve in collateral-dependent myocardium. J Am Coll Cardiol. 1999;33(3):705–7.

    CAS  PubMed  Google Scholar 

  55. Meier P, Gloekler S, Zbinden R, et al. Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation. 2007;116(9):975–83.

    PubMed  Google Scholar 

  56. Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging. 2010;3(6):623–40.

    PubMed  Google Scholar 

  57. Hochman JS, Lamas GA, Buller CE, et al. Coronary intervention for persistent occlusion after myocardial infarction. N Engl J Med. 2006;355(23):2395–407.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Hochman JS, Reynolds HR, Dzavik V, et al. Long-term effects of percutaneous coronary intervention of the totally occluded infarct-related artery in the subacute phase after myocardial infarction. Circulation. 2011;124(21):2320–8.

    PubMed Central  PubMed  Google Scholar 

  59. Desideri A, Cortigiani L, Christen AI, et al. The extent of perfusion-F18-fluorodeoxyglucose positron emission tomography mismatch determines mortality in medically treated patients with chronic ischemic left ventricular dysfunction. J Am Coll Cardiol. 2005;46(7):1264–9.

    PubMed  Google Scholar 

  60. Beanlands RS, Labinaz M, Ruddy TD, et al. Establishing an approach for patients with recent coronary occlusion: identification of viable myocardium. J Nucl Cardiol. 1999;6(3):298–305.

    CAS  PubMed  Google Scholar 

  61. Louie HW, Laks H, Milgalter E, et al. Ischemic cardiomyopathy. Criteria for coronary revascularization and cardiac transplantation. Circulation. 1991;84(5 Suppl):III290–5.

    CAS  PubMed  Google Scholar 

  62. Yamaguchi A, Ino T, Adachi H, et al. Left ventricular volume predicts postoperative course in patients with ischemic cardiomyopathy. Ann Thorac Surg. 1998;65(2):434–8.

    CAS  PubMed  Google Scholar 

  63. Heusch G, Libby P, Gersh B, et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet. 2014;383(9932):1933–43.

    PubMed Central  PubMed  Google Scholar 

  64. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–36.

    CAS  PubMed  Google Scholar 

  65. Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev. 2003;83(4):1113–51.

    CAS  PubMed  Google Scholar 

  66. Waltenberger J, Gelissen M, Bekkers SC, et al. Clinical pacing post-conditioning during revascularization after AMI. JACC Cardiovasc Imaging. 2014;7(6):620–6.

    PubMed  Google Scholar 

  67. Ndrepepa G, Kastrati A, Schwaiger M, et al. Relationship between residual blood flow in the infarct-related artery and scintigraphic infarct size, myocardial salvage, and functional recovery in patients with acute myocardial infarction. J Nucl Med. 2005;46(11):1782–8.

    PubMed  Google Scholar 

  68. Dall'Armellina E, Karia N, Lindsay AC, et al. Dynamic changes of edema and late gadolinium enhancement after acute myocardial infarction and their relationship to functional recovery and salvage index. Circ Cardiovasc Imaging. 2011;4(3):228–36.

    PubMed Central  PubMed  Google Scholar 

  69. Schulman D, Latchman DS, Yellon DM. Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway. Am J Physiol Heart Circ Physiol. 2002;283(4):H1481–8.

    CAS  PubMed  Google Scholar 

  70. Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res. 2004;61(3):448–60.

    CAS  PubMed  Google Scholar 

  71. Perrone-Filardi P, Pinto FJ. Looking for myocardial viability after a STICH trial: not enough to close the door. J Nucl Med. 2012;53(3):349–52.

    PubMed  Google Scholar 

  72. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–53.

    CAS  PubMed  Google Scholar 

  73. Dilsizian V, Arrighi JA, Diodati JG, et al. Myocardial viability in patients with chronic coronary artery disease. Comparison of 99mTc-sestamibi with thallium reinjection and [18F]fluorodeoxyglucose. Circulation. 1994;89(2):578–87.

    CAS  PubMed  Google Scholar 

  74. Akinboboye OO, Idris O, Cannon PJ, Bergmann SR. Usefulness of positron emission tomography in defining myocardial viability in patients referred for cardiac transplantation. Am J Cardiol. 1999;83(8):1271–4, A9.

    CAS  PubMed  Google Scholar 

  75. Tamaki N, Kawamoto M, Takahashi N, et al. Prognostic value of an increase in fluorine-18 deoxyglucose uptake in patients with myocardial infarction: comparison with stress thallium imaging. J Am Coll Cardiol. 1993;22(6):1621–7.

    CAS  PubMed  Google Scholar 

  76. Dreyfus GD, Duboc D, Blasco A, et al. Myocardial viability assessment in ischemic cardiomyopathy: benefits of coronary revascularization. Ann Thorac Surg. 1994;57(6):1402–7; discussion 7–8.

    CAS  PubMed  Google Scholar 

  77. Marin-Neto JA, Dilsizian V, Arrighi JA, et al. Thallium reinjection demonstrates viable myocardium in regions with reverse redistribution. Circulation. 1993;88(4 Pt 1):1736–45.

    CAS  PubMed  Google Scholar 

  78. Dilsizian V. Cardiac magnetic resonance versus SPECT: are all noninfarct myocardial regions created equal? J Nucl Cardiol. 2007;14(1):9–14.

    PubMed  Google Scholar 

  79. Balcells E, Powers ER, Lepper W, et al. Detection of myocardial viability by contrast echocardiography in acute infarction predicts recovery of resting function and contractile reserve. J Am Coll Cardiol. 2003;41(5):827–33.

    PubMed  Google Scholar 

  80. La Canna G, Alfieri O, Giubbini R, Gargano M, Ferrari R, Visioli O. Echocardiography during infusion of dobutamine for identification of reversibly dysfunction in patients with chronic coronary artery disease. J Am Coll Cardiol. 1994;23(3):617–26.

    PubMed  Google Scholar 

  81. Hoffmann R, Lethen H, Marwick T, et al. Analysis of interinstitutional observer agreement in interpretation of dobutamine stress echocardiograms. J Am Coll Cardiol. 1996;27(2):330–6.

    CAS  PubMed  Google Scholar 

  82. Plana JC, Mikati IA, Dokainish H, et al. A randomized cross-over study for evaluation of the effect of image optimization with contrast on the diagnostic accuracy of dobutamine echocardiography in coronary artery disease The OPTIMIZE Trial. JACC Cardiovasc Imaging. 2008;1(2):145–52.

    PubMed  Google Scholar 

  83. Hoffmann R, Altiok E, Nowak B, et al. Strain rate analysis allows detection of differences in diastolic function between viable and nonviable myocardial segments. J Am Soc Echocardiogr. 2005;18(4):330–5.

    PubMed  Google Scholar 

  84. Chatzizisis YS, Murthy VL, Solomon SD. Echocardiographic evaluation of coronary artery disease. Coron Artery Dis. 2013;24(7):613–23.

    PubMed  Google Scholar 

  85. Brasch RC. New directions in the development of MR imaging contrast media. Radiology. 1992;183(1):1–11.

    CAS  PubMed  Google Scholar 

  86. Adenaw N, Salerno M. PET/MRI: current state of the art and future potential for cardiovascular applications. J Nucl Cardiol. 2013;20(6):976–89.

    PubMed  Google Scholar 

  87. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100(19):1992–2002.

    CAS  PubMed  Google Scholar 

  88. Ricciardi MJ, Wu E, Davidson CJ, et al. Visualization of discrete microinfarction after percutaneous coronary intervention associated with mild creatine kinase-MB elevation. Circulation. 2001;103(23):2780–3.

    CAS  PubMed  Google Scholar 

  89. Hadamitzky M, Langhans B, Hausleiter J, et al. Prognostic value of late gadolinium enhancement in cardiovascular magnetic resonance imaging after acute ST-elevation myocardial infarction in comparison with single-photon emission tomography using Tc99m-Sestamibi. Eur Heart J Cardiovasc Imaging. 2014;15(2):216–25.

    PubMed  Google Scholar 

  90. Klein C, Nekolla SG, Bengel FM, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation. 2002;105(2):162–7.

    PubMed  Google Scholar 

  91. Wellnhofer E, Olariu A, Klein C, et al. Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation. 2004;109(18):2172–4.

    PubMed  Google Scholar 

  92. Rogers Jr WJ, Kramer CM, Geskin G, et al. Early contrast-enhanced MRI predicts late functional recovery after reperfused myocardial infarction. Circulation. 1999;99(6):744–50.

    PubMed  Google Scholar 

  93. Kramer CM, Rogers Jr WJ, Mankad S, Theobald TM, Pakstis DL, Hu YL. Contractile reserve and contrast uptake pattern by magnetic resonance imaging and functional recovery after reperfused myocardial infarction. J Am Coll Cardiol. 2000;36(6):1835–40.

    CAS  PubMed  Google Scholar 

  94. Choi CJ, Haji-Momenian S, Dimaria JM, et al. Infarct involution and improved function during healing of acute myocardial infarction: the role of microvascular obstruction. J Cardiovasc Magn Reson. 2004;6(4):917–25.

    PubMed  Google Scholar 

  95. Petersen SE, Voigtlander T, Kreitner KF, et al. Late improvement of regional wall motion after the subacute phase of myocardial infarction treated by acute PTCA in a 6-month follow-up. J Cardiovasc Magn Reson. 2003;5(3):487–95.

    CAS  PubMed  Google Scholar 

  96. Roes SD, Kaandorp TA, Marsan NA, et al. Agreement and disagreement between contrast-enhanced magnetic resonance imaging and nuclear imaging for assessment of myocardial viability. Eur J Nucl Med Mol Imaging. 2009;36(4):594–601.

    PubMed  Google Scholar 

  97. Wu YW, Tadamura E, Yamamuro M, et al. Comparison of contrast-enhanced MRI with (18)F-FDG PET/201Tl SPECT in dysfunctional myocardium: relation to early functional outcome after surgical revascularization in chronic ischemic heart disease. J Nucl Med. 2007;48(7):1096–103.

    PubMed  Google Scholar 

  98. Knuesel PR, Nanz D, Wyss C, et al. Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization. Circulation. 2003;108(9):1095–100.

    PubMed  Google Scholar 

  99. Wong TC, Piehler K, Meier CG, et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation. 2012;126(10):1206–16.

    PubMed Central  PubMed  Google Scholar 

  100. Wong TC, Piehler KM, Kang IA, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J. 2014;35(10):657–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Schindler TH, Lima JA. Assessment of myocardial matrix expansion with cardiac magnetic resonance: entering a new area of cardiac risk stratification in type 2 diabetes mellitus? Eur Heart J. 2014;35(10):608–11.

    CAS  PubMed  Google Scholar 

  102. Di Carli MF, Kwong RY, Jerosch-Herold M. Insights into left ventricular remodeling through noninvasive measures of myocardial matrix expansion with cardiovascular magnetic resonance. Circulation. 2012;126(10):1179–81.

    PubMed Central  PubMed  Google Scholar 

  103. Nensa F, Poeppel TD, Beiderwellen K, et al. Hybrid PET/MR imaging of the heart: feasibility and initial results. Radiology. 2013;268(2):366–73.

    PubMed  Google Scholar 

  104. Rischpler C, Nekolla SG, Dregely I, Schwaiger M. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med. 2013;54(3):402–15.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Some sections of the manuscript may be similar to sections of an extensive review of cardiac PET by Valenta et al. [33]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hellmut Schindler MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Valenta, I., Zhang, X., Schindler, T.H. (2015). Concepts of PET, SPECT, and MRI in the Assessment of Myocardial Viability Leading to PET/MRI Application. In: Schindler, T., George, R., Lima, J. (eds) Molecular and Multimodality Imaging in Cardiovascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-19611-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19611-4_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19610-7

  • Online ISBN: 978-3-319-19611-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics