Synergies Between CogInfoCom and Other Fields

  • Péter Baranyi
  • Adam Csapo
  • Gyula Sallai


In this chapter, several key points of synergy are discussed from the perspective of existing research fields relevant to the merging process between humans and ICT. It is important to emphasize that while all of these fields have their own motivations and unique set of methodologies, they also incorporate some aspect, or some future potential that makes them relevant to the use and support of cognitive capabilities in infocommunications. In this chapter, we aim to focus primarily on such aspects. However, partly due to the fact that the information concept underlying CogInfoCom—as discussed earlier in Sect.  2.3.3—focuses on functionally relevant by-products of interaction rather than exclusively on the transfer of explicit knowledge, it will not always be possible to draw a clear line between what is relevant and what is not. Nevertheless, those aspects that are already clearly relevant to CogInfoCom are presented in some detail. Modes of usage which focus on long-term co-evolution rather than “episodic” interactions are of particular interest.


Sensory Modality Brain Computer Interface Body Area Network Affective Computing Virtual Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams R, Hannaford B (1999) Stable haptic interaction with virtual environments. IEEE Trans Robot Autom 15(3):465–474CrossRefGoogle Scholar
  2. Alpcan T, Bauckhage C, Kotsovinos E (2007) Towards 3D Internet: why, what, and how? In: International conference on cyberworlds, 2007 (CW’07), pp 95–99Google Scholar
  3. Ambady N, Rosenthal R (1992) Thin slices of expressive behavior as predictors of interpersonal consequences: a meta-analysis. Psychol Bull 111(2):256CrossRefGoogle Scholar
  4. Auvray M, Myin E (2009) Perception with compensatory devices: from sensory substitution to sensorimotor extension. Cognit Sci 33:1036–1058CrossRefGoogle Scholar
  5. Bach-y Rita P, Tyler M, Kaczmarek K (2003) Seeing with the brain. Int J Hum Comput Interact 15(2):285–295CrossRefGoogle Scholar
  6. Benford S, Bowers J, Fahlen LE, Greenhalgh C, Snowdon D (1997) Embodiments, avatars, clones and agents for multi-user, multi-sensory virtual worlds. Multimedia Systems 5(2):93–104CrossRefGoogle Scholar
  7. Biocca F, Kim J, Choi Y (2001) Visual touch in virtual environments: an exploratory study of presence, multimodal interfaces and cross-modal sensory illusions. Presence Teleoperators Virtual Environ 10(3):247–265CrossRefGoogle Scholar
  8. Biocca F, Inoue Y, Polinsky H, Lee A, Tang A (2002) Visual cues and virtual touch: role of visual stimuli and intersensory integration in cross-modal haptic illusions and the sense of presence. In: Gouveia F (ed) Proceedings of presence, PortoGoogle Scholar
  9. Card SK, Moran TP, Newell A (1986) The psychology of human-computer interaction. Lawrence Erlbaum AssociatesGoogle Scholar
  10. Cassell J, Bickmore T, Billinghurst M, Campbell L, Chang K, Vilhjalmsson H, Yan H (1999) Embodiment in conversational interfaces: REA. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 520–527Google Scholar
  11. Chen M, Gonzalez S, Vasilakos A, Cao H, Leung V (2011) Body area networks: a survey. Mobile Netw Appl 16(2):171–193CrossRefGoogle Scholar
  12. Danyadi Z, Foldesi P, Koczy L (2012) Fuzzy search space for correction of cognitive biases in constructing mathematical models. In: 3rd IEEE international conference on cognitive infocommunications, Kosice, pp 585–589Google Scholar
  13. Dobelle W (2000) Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J 46(1):3–9CrossRefGoogle Scholar
  14. Ekman P (2003) Darwin, deception, and facial expression. Ann N Y Acad Sci 1000(1):205–221CrossRefGoogle Scholar
  15. Ellis S (1991) Nature and origins of virtual environments: a bibliographical essay. Comput Syst Eng 2(4):321–347CrossRefGoogle Scholar
  16. Endsley M, Garland D (2000) Situation awareness: analysis and measurement. Routledge, New YorkGoogle Scholar
  17. Foldesi P, Botzheim J (2012) Computational method for corrective mechanism of cognitive decision-making biases. In: 2012 IEEE 3rd international conference on cognitive infocommunications (CogInfoCom), pp 211–215Google Scholar
  18. Fortuna C, Mohorcic M (2009) Trends in the development of communication networks: cognitive networks. Comput Netw 53(9):1354–1376CrossRefGoogle Scholar
  19. Fuchs S, Hale K, Axellson P (2007) Augmented cognition can increase human performance in the control room. In: 2007 IEEE 8th human factors and power plants and HPRCT 13th annual meeting, Monterey, pp 128–132Google Scholar
  20. Galambos P, Baranyi P (2011a) Vibrotactile force feedback for telemanipulation: concept and applications. In: 2011 2nd international conference on cognitive infocommunications (CogInfoCom). IEEE, Budapest, pp 1–6Google Scholar
  21. Garriott R (1985) Ultima IV: quest of the avatar. Origin SystemsGoogle Scholar
  22. Gilovich T, Griffin D, Kahneman D (2002) Heuristics and biases: the psychology of intuitive judgement. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  23. Greitzer FL, Griffith D (2006) A human-information interaction perspective on augmented cognition. In: Abstract submitted to augmented cognition international, CA[PNNL-SA-49657], San FranciscoGoogle Scholar
  24. Griffith D, Greitzer FL (2007) Neo-symbiosis: the next stage in the evolution of human information interaction. Int J Cogn Inform Nat Intell 1(1):39–52CrossRefGoogle Scholar
  25. Gurkok H, Nijholt A (2012) Brain-computer interfaces for multimodal interaction: a survey and principles. Int J Hum Comput Interact 28(5):292–307CrossRefGoogle Scholar
  26. Hale KS, Fuchs S, Berka C (2008) Driving EEG cognitive assessment using eye fixations. In: 2nd international conference on applied human factors and ergonomics, Las VegasGoogle Scholar
  27. Hanson MA, Powell HC Jr, Barth AT, Ringgenberg K, Calhoun BH, Aylor JH, Lach J (2009) Body area sensor networks: challenges and opportunities. Computer (1):58–65CrossRefGoogle Scholar
  28. Hecht D, Reiner M (2009) Sensory dominance in combinations of audio, visual and haptic stimuli. Exp Brain Res 193:307–314CrossRefGoogle Scholar
  29. Hochberg L, Donoghue J (2006) Sensors for brain-computer interfaces. IEEE Eng Med Biol Mag 25(5):32–38CrossRefGoogle Scholar
  30. Hurley S, Noe A (2003) Neural plasticity and consciousness. Biol Philos 18:131–168CrossRefGoogle Scholar
  31. Kahneman D (2011) Thinking, fast and slow. Farrar, Straus and GirouxGoogle Scholar
  32. Kapahnke P, Liedtke P, Nesbigall S, Warwas S, Klusch M (2010) An open platform for semantic-based 3D simulations in the 3D Internet. Lect Notes Comput Sci 6497:161–176CrossRefGoogle Scholar
  33. Kitagawa M, Dokko D, Okamura A, Yuh D (2005) Effect of sensory substitution on suture-manipulation forces for robotic surgical systems. J Thorac Cardiovasc Surg 129(1):151–158CrossRefGoogle Scholar
  34. Latre B, Braem B, Moerman I, Blondia C, Demeester P (2011) A survey on wireless body area networks. Wirel Netw 17(1):1–18CrossRefGoogle Scholar
  35. Massimino M (1992) Sensory substitution for force feedback in space teleoperation. Ph.D. thesis, MIT, Department of Mechanical EngineeringGoogle Scholar
  36. Niitsuma M, Hashimoto H (2009) Observation of human activities based on spatial memory in intelligent space. J Rob Mechatronics 21(4):515–523Google Scholar
  37. Niitsuma M, Hashimoto H, Hashimoto H (2007) Spatial memory as an aid system for human activity in intelligent space. IEEE Trans Ind Electron 54(2):1122–1131CrossRefGoogle Scholar
  38. Nijholt A, Tan D (2008) Brain-computer interfacing for intelligent systems. IEEE Intell Syst 23(3):72–79CrossRefGoogle Scholar
  39. Ning H, Wang Z (2011) Future Internet of things architecture: like mankind neural system or social organization framework? IEEE Commun Lett 15(4):461–463CrossRefGoogle Scholar
  40. Pavani F, Spence C, Driver J (2000) Visual capture of touch: out-of-the-body experiences with rubber gloves. Psychol Sci 11(5):353–359CrossRefGoogle Scholar
  41. Pentland A (2007) Social signal processing. IEEE Signal Process Mag 24(4):108CrossRefGoogle Scholar
  42. Pentland A (2008) Honest signals: how they shape our world. MIT Press, LondonGoogle Scholar
  43. Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Context aware computing for the Internet of things: a survey. IEEE Commun Surv Tutorials 16(1):414–454CrossRefGoogle Scholar
  44. Picard RW (1995) Affective computing. The MIT Press, CambridgeGoogle Scholar
  45. Picard R (1997) Affective computing. The MIT Press, CambridgeCrossRefGoogle Scholar
  46. Picard RW (2003a) Affective computing: challenges. Int J Hum Comput Stud 59(1):55–64MathSciNetCrossRefGoogle Scholar
  47. Picard RW (2003b) What does it mean for a computer to “have” emotions. In: Trappl R, Petta P, Payr S (eds) Emotions in humans and artifacts. MIT Press, Cambridge, pp 213–235Google Scholar
  48. Preece J, Rogers Y, Sharp H, Benyon D, Holland S, Carey T (1994) Human-computer interaction. Addison-Wesley Longman LtdGoogle Scholar
  49. Prinz J (2006) Putting the brakes on enactive perception. Psyche 12:1–19Google Scholar
  50. Riva G, Davide F (2001) Communications through virtual technologies. Identity, community and technology in the communication age. IOS Press, Amsterdam, pp 124–154Google Scholar
  51. Rochlis J (2002) Human factors and telerobotics: tools and approaches for designing remote robotics workstation displays. Ph.D. thesis, Massachusetts Institute of TechnologyGoogle Scholar
  52. Sayrafian-Pour K, Yang WB, Hagedorn J, Terrill J, Yazdandoost KY, Hamaguchi K (2010) Channel models for medical implant communication. Int J Wireless Inf Networks 17(3–4):105–112CrossRefGoogle Scholar
  53. Schmorrow D (2005) Foundations of augmented cognition. Lawrence Erlbaum AssociatesGoogle Scholar
  54. Schmorrow D, Stanney KM, Wilson G, Young P (2006) Augmented cognition in human-system interaction. In: Handbook of human factors and ergonomics, 3rd edn. Wiley, New York, pp 1364–1383Google Scholar
  55. Sheridan T (1992) Musings on telepresence and virtual presence. Presence Teleoperators Virtual Environ 1(1):120–126Google Scholar
  56. Sheridan T (1994) Human factors considerations for remote manipulation. In: Advanced guidance and control aspects in robotics. NASAGoogle Scholar
  57. Sheth AP (2009) Citizen sensing, social signals, and enriching human experience. IEEE Internet Comput 13(4):87MathSciNetCrossRefGoogle Scholar
  58. Skinner A, Long L, Vice J, Blitch J, Fidopiastis CM, Berka C (2013) Augmented interaction: applying the principles of augmented cognition to human-technology and human-human interactions. In: Foundations of augmented cognition. Springer, Berlin, pp 764–773Google Scholar
  59. Smith C, Kisiel K, Morrison J (2009) Working through synthetic worlds. Ashgate, LondonGoogle Scholar
  60. St John M, Kobus DA, Morrison JG, Schmorrow D (2004) Overview of the DARPA augmented cognition technical integration experiment. Int J Hum Comput Interact 17(2):131–149CrossRefGoogle Scholar
  61. Staal MA, Bolton AE, Yaroush RA, Bourne LE Jr (2008) Cognitive performance and resilience to stress. In: Lukey B, Tepe V (eds) Biobehavioral resilience to stress. Francis & Taylor, London, pp 259–299Google Scholar
  62. Stanney KM, Schmorrow DD, Johnston M, Fuchs S, Jones D, Hale KS, Ahmad A, Young P (2009) Augmented cognition: an overview. Rev Hum Factors Ergon 5(1):195–224CrossRefGoogle Scholar
  63. Stein B, Wallace M, Meredith A (1995) Neural mechanisms mediating attention and orientation to multisensory cues. In: Gazzaniga M (ed) The cognitive neurosciences. MIT Press, Cambridge, pp 683–702Google Scholar
  64. Streitz N, Nixon P (2005) The disappearing computer. Commun ACM 48(3):32–35CrossRefGoogle Scholar
  65. Tan D, Nijholt A (2010) Brain-computer interfaces: applying our minds to human-computer interaction. Springer, BerlinCrossRefGoogle Scholar
  66. Taylor TL (2002) Living digitally: embodiment in virtual worlds. In: The social life of avatars. Springer, London, pp 40–62Google Scholar
  67. Thomas RW, Friend DH, Dasilva LA, Mackenzie AB (2006) Cognitive networks: adaptation and learning to achieve end-to-end performance objectives. IEEE Commun Mag 44(12):51–57CrossRefGoogle Scholar
  68. Tselentis G, Domingue J, Galis A, Gavras A, Hausheer D, Krco S, Lotz V, Zahariadis T (2010a) Towards the future Internet – a European research perspective. IOS Press, AmsterdamGoogle Scholar
  69. Uckelmann D, Harrisson M, Michahelles F (eds) (2011) Architecting the Internet of things. Springer, BerlinGoogle Scholar
  70. Ullah S, Higgins H, Braem B, Latre B, Blondia C, Moerman I, Saleem S, Rahman Z, Kwak KS (2012) A comprehensive survey of wireless body area networks. J Med Syst 36(3):1065–1094CrossRefGoogle Scholar
  71. Verner L, Okamura A (2006) Sensor/actuator asymmetries in telemanipulators: implications of partial force feedback. In: Proceedings of 14th symposium on haptic interfaces for virtual environments and teleoperator systems, Arlington, pp 309–314Google Scholar
  72. Vidal J (1973) Toward direct brain-computer communication. Ann Rev Biophys Bioeng 2:157–180CrossRefGoogle Scholar
  73. Vilhjalmsson HH, Cassell J (1998) Bodychat: autonomous communicative behaviors in avatars. In: Proceedings of the 2nd international conference on autonomous agents, pp 269–276Google Scholar
  74. Vinciarelli A, Pantic M, Bourlard H, Pentland A (2008) Social signals, their function, and automatic analysis: a survey. In: Proceedings of the 10th international conference on multimodal interfaces, pp 61–68Google Scholar
  75. Vinciarelli A, Pantic M, Bourlard H (2009) Social signal processing: survey of an emerging domain. Image Vision Comput 27(12):1743–1759CrossRefGoogle Scholar
  76. Waggoner Z (2009) My avatar, my self: identity in video role-playing games. McFarland, JeffersonGoogle Scholar
  77. Wang Y (2002) On cognitive informatics (keynote speech). In: 1st IEEE international conference on cognitive informatics, Calgary, pp 34–42Google Scholar
  78. Wang Y, Kinsner W (2006) Recent advances in cognitive informatics. IEEE Trans Syst Man Cybern 36(2):121–123CrossRefGoogle Scholar
  79. Welch R, Warren D (1986) Intersensory interactions. In: Boff L, Thomas J (eds) Handbook of perception and human performance, vol 1. Wiley, New York, pp 25–36Google Scholar
  80. Wilson L (2003) Interactivity or interpassivity: a question of agency in digital play. In: Fineart forum, vol 17Google Scholar
  81. Yang GZ (2014) Body sensor networks, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  82. Yang WB, Sayrafian-Pour K (2012) Interference mitigation using adaptive schemes in body area networks. Int J Wireless Inf Netw 19(3):193–200CrossRefGoogle Scholar
  83. Yuce MR (2010) Implementation of wireless body area networks for healthcare systems. Sensors Actuators A Phys 162(1):116–129. doi:10.1016/j.sna.2010.06.004
  84. Zander TO, Kothe C (2011) Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general. J Neural Eng 8(2):025005CrossRefGoogle Scholar
  85. Zhang D, Guo B, Yu Z (2011) The emergence of social and community intelligence. Computer 44(7):21–28CrossRefGoogle Scholar
  86. Zimmerman T (1996) Personal area networks: near-field intrabody communication. IBM Syst J 35(3):609–617CrossRefGoogle Scholar
  87. Zimmerman TG (1999) Wireless networked digital devices: a new paradigm for computing and communication. IBM Syst J 38(4):566–574CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Péter Baranyi
    • 1
    • 2
  • Adam Csapo
    • 2
    • 1
  • Gyula Sallai
    • 3
    • 4
  1. 1.Széchenyi István University GyőrBudapestHungary
  2. 2.Institute for Computer Science and Control of the Hungarian Academy of SciencesBudapestHungary
  3. 3.Budapest University of Technology and EconomicsBudapestHungary
  4. 4.Future Internet Research Coordination CentreUniversity of DebrecenDebrecenHungary

Personalised recommendations