Advertisement

TP Model Transformation is a Gateway Between Identification and Design

  • Péter Baranyi
Chapter

Abstract

This chapter shows that the TP model transformation can be regarded as a generic interface between identification and LMI based controler design. This let us freely select identification technique without suffering of the resulting complicated representation form.

Keywords

Gateway Interface 

References

  1. 1.
    P. Apkarian, P. Gahinet, A convex characterization of gain-scheduled H controllers. IEEE Trans. Autom. Control 40(5), 853–864 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    P. Apkarian, P. Gahinet, G. Becker, Self-scheduled H linear parameter-varying systems, in Proceedings of the 1994 American Control Conference, Baltimore, MD, vol. 1 (1994), pp. 856–860Google Scholar
  3. 3.
    S. Boyd, V. Balakrishnan, P. Kabamba, A bisection method for computing the H norm of a transfer matrix and related problems. Math. Control Signals Syst. 2(3), 207–219 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    J.C. Doyle, K. Glover, P.P. Khargonekar, B.A. Francis, State-space solutions to standard H 2 and H control problems. IEEE Trans. Autom. Control 34(8), 831–847 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    E. Feron, P. Apkarian, P. Gahinet, S-procedure for the analysis of control systems with parametric uncertainties via parameter-dependent Lyapunov functions, in Proceedings of the 1995 American Control Conference, Seattle, Washington, vol. 1 (1995), pp. 968–972Google Scholar
  6. 6.
    P. Gahinet, Explicit controller formulas for LMI-based H synthesis, in Proceedings of the 1994 American Control Conference, Baltimore, MD, vol. 3 (1994), pp. 2396–2400Google Scholar
  7. 7.
    P. Gahinet, A.J. Laub, Reliable computation of γ opt in singular H control, in Proceedings of the 33rd IEEE Conference on Decision and Control, 1994, Orlando, FL, vol. 2 (1994), pp. 1527–1532Google Scholar
  8. 8.
    I. Kaminer, P.P. Khargonekar, M.A. Rotea, Mixed H 2/H control for discrete-time systems via convex optimization. Automatica 29(1), 57–70 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. Nemirovskii, P. Gahinet, The projective method for solving linear matrix inequalities, in Proceedings of the 1994 American Control Conference, Baltimore, MD, vol. 1 (1994), pp. 840–844Google Scholar
  10. 10.
    C. Scherer, H -optimization without assumptions on finite or infinite zeros. SIAM J. Control Optim. 30(1), 143–166 (1992)Google Scholar
  11. 11.
    C. Scherer, S. Weiland, Linear matrix inequalities in control. Lecture Notes, Dutch Institute for Systems and Control, Delft, The Netherlands, 2000. http://www.cs.ele.tue.nl/sweiland/lmi.htm
  12. 12.
    P. Seiler, G.J. Balas, A. Packard, Linear parameter-varying control for the x-53 active aeroelastic wing, in Control of Linear Parameter Varying Systems with Applications, ed. by J. Mohammadpour, C.W. Scherer (Springer US, Boston, MA, 2012), pp. 483–512CrossRefGoogle Scholar
  13. 13.
    K. Tanaka, M. Sugeno, Stability analysis and design of fuzzy control systems. Fuzzy Sets Syst. 45(2), 135–156 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    K. Tanaka, H.O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach (Wiley, New York, 2001)CrossRefGoogle Scholar
  15. 15.
    K. Tanaka, T. Ikeda, H.O. Wang, Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans. Fuzzy Syst. 6(2), 250–265 (1998)CrossRefGoogle Scholar
  16. 16.
    H.O. Wang, K. Tanaka, M. Griffin, Parallel distributed compensation of nonlinear systems by Takagi-Sugeno fuzzy model, in Proceedings of the International Joint Conference of the 4th IEEE International Conference on Fuzzy Systems and the 2nd International Fuzzy Engineering Symposium, 1995, Yokohama, Japan, vol. 2 (1995), pp. 531–538Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Péter Baranyi
    • 1
  1. 1.Technology and EconomicsSzecheny Istvan University and Budapest Univerity of Technology and EconomicsBudapestHungary

Personalised recommendations