Advertisement

Algorithms of the TP Model Transformation

  • Péter Baranyi
Chapter

Abstract

This chapter proposes the generalized TP model transformation that includes various TP model manipulation facilities into one conceptuar framework. The generalized TP model transformation includes extensions such as the HOSVD and quasi HOSVD canonical form, the Bilinear-, Multi, Pseudo, and convex TP model transformation which all serves the goal to have a Transformation technique that is capable of freely manipulating all components of the TP model according to various conditions.

Keywords

Bi-linear- Pseudo- Muti- Generalised TP model transformtion 

References

  1. 1.
    P. Baranyi, TP model transformation as a way to LMI-based controller design. IEEE Trans Ind. Electron. 51(2), 387–400 (2004)CrossRefGoogle Scholar
  2. 2.
    P. Baranyi, Output feedback control of two-dimensional aeroelastic system. J. Guid. Control. Dyn. 29(3), 762–767 (2006)CrossRefGoogle Scholar
  3. 3.
    P. Baranyi, D. Tikk, Y. Yam, R.J. Patton, From differential equations to PDC controller design via numerical transformation. Comput. Ind. 51(3), 281–297 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    P. Baranyi, Z. Petres, P. Korondi, Y. Yam, H. Hashimoto, Complexity relaxation of the tensor product model transformation for higher dimensional problems. Asian J. Control 9(2), 195–200 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    P. Baranyi, Z. Petres, Sz. Nagy, TPtool — tensor product MATLAB toolbox. Website (2007). http://tp-control.hu/
  6. 6.
    P. Baranyi, Y. Yam, P. Varlaki, Tensor Product Model Transformation in Polytopic Model-Based Control (CRC/Taylor & Francis Group, Boca Raton/London, 2013)Google Scholar
  7. 7.
    Sz. Nagy, Z. Petres, P. Baranyi, H. Hashimoto, Computational relaxed TP model transformation: restricting the computation to subspaces of the dynamic model. Asian J. Control 11(5), 461–475 (2009)Google Scholar
  8. 8.
    L. Szeidl, P. Várlaki, HOSVD based canonical form for polytopic models of dynamic systems. J. Adv. Comput. Intell. Intell. Infor. 13(1), 52–60 (2009)Google Scholar
  9. 9.
    D. Tikk, P. Baranyi, R.J. Patton, Approximation properties of TP model forms and its consequences to TPDC design framework. Asian J. Control 9(3), 221–231 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Várkonyi, D. Tikk, P. Korondi, P. Baranyi, A new algorithm for RNO-INO type tensor product model representation, in Proceedings of the IEEE 9th International Conference on Intelligent Engineering Systems (2005), pp. 263–266Google Scholar
  11. 11.
    Y. Yam, P. Baranyi, C.T. Yang, Reduction of fuzzy rule base via singular value decomposition. IEEE Trans. Fuzzy Syst. 7(2), 120–132 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Péter Baranyi
    • 1
  1. 1.Technology and EconomicsSzecheny Istvan University and Budapest Univerity of Technology and EconomicsBudapestHungary

Personalised recommendations