Skip to main content

Impedance Control for Force Reflecting Telemanipulation

  • Chapter
  • First Online:
TP-Model Transformation-Based-Control Design Frameworks
  • 401 Accesses

Abstract

This Chapter introduces the impedance model that is used in the control of the force reflecting telemanipulation. The next chapters will use this model to show the effectiveness of the TPτ model transformation based design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.H. Ahn, K.H. Lee, Y.K. Kim, H.R. Kim, A bilateral compliance control for time delayed systems, in SICE-ICASE International Joint Conference, Los Alamitos, CA (2006), pp. 3048–3052

    Google Scholar 

  2. H.C. Cho, J.H. Park, Stable bilateral teleoperation under a time delay using a robust impedance control. Mechatronics 15(5), 611–625 (2005)

    Article  MathSciNet  Google Scholar 

  3. R.V. Dubey, T.F. Chan, S.E. Everett, Variable damping impedance control of a bilateral telerobotic system, IEEE Control Systems 17(1), 37–45 (1997)

    Article  Google Scholar 

  4. P. Fraisse, A. Lelevé, Teleoperation over IP network: Network delay regulation and adaptive control. Auton. Robot. 15(3), 225–235 (2003)

    Article  Google Scholar 

  5. P. Galambos, P. Baranyi, Representing the model of impedance controlled robot interaction with feedback delay in polytopic LPV form: TP model transformation based approach. Acta Polytech. Hung. 10(1), 139–157 (2013)

    Google Scholar 

  6. P. Galambos, P. Baranyi, TP-tau model transformation: a systematic modelling framework to handle internal time delays in control systems. Asian J. Control 17(2), 486–496 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Galambos, P. Baranyi, G. Arz, Tensor product model transformation-based control design for force reflecting tele-grasping under time delay. Proc. IME C J. Mech. Eng. Sci. 228(4), 765–777 (2014)

    Article  Google Scholar 

  8. S. Hirche, A. Bauer, M. Buss, Transparency of haptic telepresence systems with constant time delay, in Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005 (2005), pp. 328–333

    Google Scholar 

  9. N. Hogan, Impedance control: An approach to manipulation: part I—Theory. J. Dyn. Syst. Meas. Control. 107(1), 1–7 (1985)

    Article  MATH  Google Scholar 

  10. N. Hogan, Impedance control: an approach to manipulation: part II—implementation. J. Dyn. Syst. Meas. Control. 107(1), 8–16 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. N. Hogan, Impedance control: an approach to manipulation: part III—applications. J. Dyn. Syst. Meas. Control. 107(1), 17–24 (1985)

    Article  MATH  Google Scholar 

  12. P.F. Hokayem, M.W. Spong, Bilateral teleoperation: an historical survey. Automatica 42(12), 2035–2057 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. S.H. Kang, M. Jin, P.H. Chang, A solution to the accuracy/robustness dilemma in impedance control. IEEE/ASME Trans. Mechatron. 14(3), 282–294 (2009). doi:10.1109/TMECH.2008.2005524

    Article  Google Scholar 

  14. W.S. Kim, B. Hannaford, A.K. Bejczy, Force-reflection and shared compliant control in operating telemanipulators with time delay. IEEE Trans. Robot. Autom. 8(2), 176–185 (1992)

    Article  Google Scholar 

  15. A. Kugi, C. Ott, A. Albu-Schaffer, G. Hirzinger, On the Passivity-Based impedance control of flexible joint robots. IEEE Trans. Robot. 24(2), 416–429 (2008)

    Article  Google Scholar 

  16. L.J. Love, W.J. Book, Force reflecting teleoperation with adaptive impedance control. IEEE Trans. Syst. Man Cybern. B Cybern. 34(1), 159–165 (2004)

    Article  Google Scholar 

  17. R. Matuśu, R. Prokop, Control of systems with time-varying delay: a comparison study, in Proceedings of the 12th WSEAS International Conference on Automatic Control, Modelling & Simulation, ACMOS’10, Catania, Italy (World Scientific and Engineering Academy and Society, Bulgaria, 2010), pp. 125–130

    Google Scholar 

  18. S. Munir, W.J. Book, Internet-based teleoperation using wave variables with prediction. IEEE/ASME Trans. Mechatron. 7(2), 124–133 (2002)

    Article  Google Scholar 

  19. M. Otsuka, N. Matsumoto, T. Idogaki, K. Kosuge, T. Itoh, Bilateral telemanipulator system with communication time delay based on force-sum-driven virtual internal models, in Proceedings of 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan (1995), pp. 344–350

    Google Scholar 

  20. L. Pekar, Root locus analysis of a retarded quasipolynomial. WSEAS Trans. System Control 6(7), 79–91 (2011)

    Google Scholar 

  21. I.G. Polushin, P.X. Liu, C.-H. Lung, A Force-Reflection algorithm for improved transparency in bilateral teleoperation with communication delay. IEEE/ASME Trans. Mechatron. 12(3), 361–374 (2007)

    Article  Google Scholar 

  22. J. Pomares, G.J. Garcia, F. Torres, Impedance control for fusing multisensorial systems in robotic manipulation tasks, in Proceedings of the 2005 WSEAS International Conference on Dynamical Systems and Control, CONTROL’05, Stevens Point, WI (World Scientific and Engineering Academy and Society, Bulagaria, 2005), pp. 357–362

    Google Scholar 

  23. A.C. Smith, K. Hashtrudi-Zaad, Smith predictor type control architectures for time delayed teleoperation. Int. J. Rob. Res. 25(8), 797–818 (2006)

    Article  Google Scholar 

  24. M. Tarbouchi, M.R. Strawson, H. Benabdallah, Impedance control of a manipulator using a fuzzy model reference learning controller, in Proceedings of the 10th WSEAS International Conference on Automatic Control, Modelling Simulation, Stevens Point, WI (World Scientific and Engineering Academy and Society, Bulgaria, 2008), pp. 119–126

    Google Scholar 

  25. W.-H. Zhu, S.E. Salcudean, Stability guaranteed teleoperation: an adaptive motion/force control approach. IEEE Trans. Autom. Control 45(11), 1951–1969 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Zhu, X. He, W. Gueaieb, Trends in the control schemes for bilateral teleoperation with time delay, in Autonomous and Intelligent Systems, ed. by M. Kamel, F. Karray, W. Gueaieb, A. Khamis. Lecture Notes in Computer Science, vol. 6752 (Springer, Berlin/Heidelberg, 2011), pp. 146–155

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baranyi, P. (2016). Impedance Control for Force Reflecting Telemanipulation. In: TP-Model Transformation-Based-Control Design Frameworks. Springer, Cham. https://doi.org/10.1007/978-3-319-19605-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19605-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19604-6

  • Online ISBN: 978-3-319-19605-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics