Impedance Control for Force Reflecting Telemanipulation

  • Péter Baranyi


This Chapter introduces the impedance model that is used in the control of the force reflecting telemanipulation. The next chapters will use this model to show the effectiveness of the TP τ model transformation based design.


Impedance control Force feedback Time delay 


  1. 1.
    S.H. Ahn, K.H. Lee, Y.K. Kim, H.R. Kim, A bilateral compliance control for time delayed systems, in SICE-ICASE International Joint Conference, Los Alamitos, CA (2006), pp. 3048–3052Google Scholar
  2. 2.
    H.C. Cho, J.H. Park, Stable bilateral teleoperation under a time delay using a robust impedance control. Mechatronics 15(5), 611–625 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    R.V. Dubey, T.F. Chan, S.E. Everett, Variable damping impedance control of a bilateral telerobotic system, IEEE Control Systems 17(1), 37–45 (1997)CrossRefGoogle Scholar
  4. 4.
    P. Fraisse, A. Lelevé, Teleoperation over IP network: Network delay regulation and adaptive control. Auton. Robot. 15(3), 225–235 (2003)CrossRefGoogle Scholar
  5. 5.
    P. Galambos, P. Baranyi, Representing the model of impedance controlled robot interaction with feedback delay in polytopic LPV form: TP model transformation based approach. Acta Polytech. Hung. 10(1), 139–157 (2013)Google Scholar
  6. 6.
    P. Galambos, P. Baranyi, TP-tau model transformation: a systematic modelling framework to handle internal time delays in control systems. Asian J. Control 17(2), 486–496 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    P. Galambos, P. Baranyi, G. Arz, Tensor product model transformation-based control design for force reflecting tele-grasping under time delay. Proc. IME C J. Mech. Eng. Sci. 228(4), 765–777 (2014)CrossRefGoogle Scholar
  8. 8.
    S. Hirche, A. Bauer, M. Buss, Transparency of haptic telepresence systems with constant time delay, in Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005 (2005), pp. 328–333Google Scholar
  9. 9.
    N. Hogan, Impedance control: An approach to manipulation: part I—Theory. J. Dyn. Syst. Meas. Control. 107(1), 1–7 (1985)CrossRefzbMATHGoogle Scholar
  10. 10.
    N. Hogan, Impedance control: an approach to manipulation: part II—implementation. J. Dyn. Syst. Meas. Control. 107(1), 8–16 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    N. Hogan, Impedance control: an approach to manipulation: part III—applications. J. Dyn. Syst. Meas. Control. 107(1), 17–24 (1985)CrossRefzbMATHGoogle Scholar
  12. 12.
    P.F. Hokayem, M.W. Spong, Bilateral teleoperation: an historical survey. Automatica 42(12), 2035–2057 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    S.H. Kang, M. Jin, P.H. Chang, A solution to the accuracy/robustness dilemma in impedance control. IEEE/ASME Trans. Mechatron. 14(3), 282–294 (2009). doi:10.1109/TMECH.2008.2005524CrossRefGoogle Scholar
  14. 14.
    W.S. Kim, B. Hannaford, A.K. Bejczy, Force-reflection and shared compliant control in operating telemanipulators with time delay. IEEE Trans. Robot. Autom. 8(2), 176–185 (1992)CrossRefGoogle Scholar
  15. 15.
    A. Kugi, C. Ott, A. Albu-Schaffer, G. Hirzinger, On the Passivity-Based impedance control of flexible joint robots. IEEE Trans. Robot. 24(2), 416–429 (2008)CrossRefGoogle Scholar
  16. 16.
    L.J. Love, W.J. Book, Force reflecting teleoperation with adaptive impedance control. IEEE Trans. Syst. Man Cybern. B Cybern. 34(1), 159–165 (2004)CrossRefGoogle Scholar
  17. 17.
    R. Matuśu, R. Prokop, Control of systems with time-varying delay: a comparison study, in Proceedings of the 12th WSEAS International Conference on Automatic Control, Modelling & Simulation, ACMOS’10, Catania, Italy (World Scientific and Engineering Academy and Society, Bulgaria, 2010), pp. 125–130Google Scholar
  18. 18.
    S. Munir, W.J. Book, Internet-based teleoperation using wave variables with prediction. IEEE/ASME Trans. Mechatron. 7(2), 124–133 (2002)CrossRefGoogle Scholar
  19. 19.
    M. Otsuka, N. Matsumoto, T. Idogaki, K. Kosuge, T. Itoh, Bilateral telemanipulator system with communication time delay based on force-sum-driven virtual internal models, in Proceedings of 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan (1995), pp. 344–350Google Scholar
  20. 20.
    L. Pekar, Root locus analysis of a retarded quasipolynomial. WSEAS Trans. System Control 6(7), 79–91 (2011)Google Scholar
  21. 21.
    I.G. Polushin, P.X. Liu, C.-H. Lung, A Force-Reflection algorithm for improved transparency in bilateral teleoperation with communication delay. IEEE/ASME Trans. Mechatron. 12(3), 361–374 (2007)CrossRefGoogle Scholar
  22. 22.
    J. Pomares, G.J. Garcia, F. Torres, Impedance control for fusing multisensorial systems in robotic manipulation tasks, in Proceedings of the 2005 WSEAS International Conference on Dynamical Systems and Control, CONTROL’05, Stevens Point, WI (World Scientific and Engineering Academy and Society, Bulagaria, 2005), pp. 357–362Google Scholar
  23. 23.
    A.C. Smith, K. Hashtrudi-Zaad, Smith predictor type control architectures for time delayed teleoperation. Int. J. Rob. Res. 25(8), 797–818 (2006)CrossRefGoogle Scholar
  24. 24.
    M. Tarbouchi, M.R. Strawson, H. Benabdallah, Impedance control of a manipulator using a fuzzy model reference learning controller, in Proceedings of the 10th WSEAS International Conference on Automatic Control, Modelling Simulation, Stevens Point, WI (World Scientific and Engineering Academy and Society, Bulgaria, 2008), pp. 119–126Google Scholar
  25. 25.
    W.-H. Zhu, S.E. Salcudean, Stability guaranteed teleoperation: an adaptive motion/force control approach. IEEE Trans. Autom. Control 45(11), 1951–1969 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    J. Zhu, X. He, W. Gueaieb, Trends in the control schemes for bilateral teleoperation with time delay, in Autonomous and Intelligent Systems, ed. by M. Kamel, F. Karray, W. Gueaieb, A. Khamis. Lecture Notes in Computer Science, vol. 6752 (Springer, Berlin/Heidelberg, 2011), pp. 146–155Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Péter Baranyi
    • 1
  1. 1.Technology and EconomicsSzecheny Istvan University and Budapest Univerity of Technology and EconomicsBudapestHungary

Personalised recommendations