Advertisement

Dynamic Cartography: A Concept for Multidimensional Point Symbols

  • Andrea Nass
  • Stephan van Gasselt
Chapter
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

The exponential increase of acquired and managed geospatial data during the last decades, and the development of new hard- and software frameworks are two main drivers which have facilitated technological innovation in computer–animated cartography and cartographic animation (CA). In the Earth sciences cartographic animation are used for investigations, analyses and visual validation of complex settings and allow depicting a higher level of information by combining spatial data and attributes from different sources. To accomplish this, GIS technology is commonly used for processing, management and the presentation of spatial data. Despite the broad application field of GIS technology, temporal, i.e. dynamic, information is usually not covered in full depth and it remains challenging to manage and visualize such information in the same way as spatial information. Consequently, spatiotemporal data models need to be developed and adopted for each individual case by building an underlying structure which allows relating spatial geometry to cartographic as well as thematic attributes, including time. This contribution tries to discuss and establish a conceptual basis for a data model that allows connecting spatial data primitives with temporal attributes in order to manage, query and visualize the animation of map objects on a higher level.

Keywords

GIS Spatiotemporal data Symbols Cartographic animation 

References

  1. Andrienko G, Andrienko N, Demsar U, Dransch D, Dykes J, Fabrikant S, Jern M, Kraak MJ, Schumann H, Tominski C (2010) Space, time and visual analytics. Int J Geogr Inf Sci 24(10):1577–1600CrossRefGoogle Scholar
  2. Bertin J (1983) Semiology of graphics: diagrams, networks, maps. (trans: Berg WJ) University of Wisconsin Press, 1983 (first published in French in 1967)Google Scholar
  3. Brynjolfsson E, McAfee A (2012) Race against the machine: how the digital revolution is accelerating innovation, driving productivity, and irreversibly transforming employment and the economy. Digital Frontier PressGoogle Scholar
  4. DiBiase D, MacEachren AM, Krygier JB, Reeves C (1992) Animation and the role of map design in scientific visualization. Cartography Geogr Inf Syst 19(4):201–214CrossRefGoogle Scholar
  5. Dransch D (1997) Computer-Animation in der Kartographie – Theorie und Praxis. Springer Verlag Berlin HeidelbergGoogle Scholar
  6. Dransch D (2014) Computer-Animation in der Kartographie – Theorie und Praxis. Reprint of the original 1st ed. 1997, Springer Verlag Berlin HeidelbergGoogle Scholar
  7. Dykes J, MacEachren AM, Kraak MJ (2005) Introduction exploring geovisualization. In: Dykes J, MacEachren AM, Kraak MJ (eds) Exploring geovisualization—a volume in international cartographic association, Elsevier Ltd., Amsterdam, p 1–19Google Scholar
  8. ESRI (2015) ArcGIS for Desktop—Documentation. http://desktop.arcgis.com/de/documentation/. Accessed Oct 2015
  9. Friedhoff RM, Benzon W (1989) Visualization: the second computer revolution. New YorkGoogle Scholar
  10. Galton A (2009) Spatial and temporal knowledge representation. Earth Sci Inf 2(3):169–187CrossRefGoogle Scholar
  11. Graser A (2011) Visualisierung raum-zeitlicher Daten in Geoinformationssysteme am Beispiel von Quantum GIS mit “Time Manager”-Plug-In. Proceedings of FOSSGIS2011, Heidelberg, GermanyGoogle Scholar
  12. Harrower M (2004) A look at the history and future of animated maps. Cartographica—Int J Geogr Inf Geovisual. 39(3):33–42Google Scholar
  13. Harrower M, Fabrikant S (2008) The role of map animation in geographic visualization. In: Dodge M, Turner M (eds) Geographic visualization: concepts, tools and applications. Wiley-Blackwell, New York, pp 49–62CrossRefGoogle Scholar
  14. Hedley NR, Drew CH, Artin EA, Lee A (1999) Hägerstrand revisited: interactive space-time visualization of complex spatial data. Informatica—An Int J Comput Inform 23(2):155–168Google Scholar
  15. Kraak MJ (2003) The space-time cube revisited from a geovisualization perspective. In: Proceedings of the 21st international cartographic conference, Durban, South-Africa, pp 1988–1995Google Scholar
  16. Kraak MJ (2007) Cartography and the use of animation. In: Cartwright W, Peterson MP, Gartner G (eds) Multimedia Cartography, Springer Verlag Berlin Heidelberg, pp 317–326Google Scholar
  17. Ma J, Wang Y (1999) A spatiotemporal data model on relational databases for coastal dynamic research. Mar Geodesy 22:105–114CrossRefGoogle Scholar
  18. MacEachren, AM (1995) How maps work: issues in representation and design. Guilford PressGoogle Scholar
  19. MacEachren AM (2005) Moving geovisualization toward support for group Work. In: Dykes J, MacEachren AM, Kraak MJ (eds) Exploring geovisualization—a volume in international cartographic association, Elsevier Ltd., Amsterdam, pp 445–462Google Scholar
  20. Marschallinger R, Gusenbauer F, Schmuck C (2006) Visualisierung geologischer Prozesse mittels kartographischer Animation. AGIT 2006 Symposium für Angewandte Geoinformatik. Salzburg. Austria, pp 407–414Google Scholar
  21. Nass A, van Gasselt S (2015) Animation in der Kartographie: Dynamische Datenprimitive. In: AGIT 2015, Symposium für Angewandte Geoinformatik, Salzburg, Austria, 8–10 July, pp 582–591, doi:10.14627/537557079Google Scholar
  22. Nöllenburg M (2007) Geographic visualization. In: Kerren A, Ebert A, Meyer J (eds) Human-centered visualization environments, vol 4417 of Lecture Notes in Computer Science, Springer Verlag Berlin Heidelberg, pp 257–294Google Scholar
  23. Ogao PJ, Kraak MJ (2002) Defining visualization operations for temporal cartographic animation design. Int. J Appl Earth Obs Geoinf. 4(1):23–31Google Scholar
  24. OGC—Open Geospatial Consortium (2011) Implementation standard for geographic information—simple feature access—part 1, version 1.2.1, Ref.-No. OGC 06-103r4Google Scholar
  25. Ott T, Swiaczny F (2001) Time-integrative geographic information systems—managment and analysis of spatio-temporal data. Springer Verlag, Berlin, HeidelbergGoogle Scholar
  26. Peuquet D (1999) Time in GIS and geographical databases. In: Longley PA, Goodchild MF, Maguire DJ, Rhind DW (eds) Geographical information systems 1, principles and technical issues, John Wiley & Sons, pp 91–103Google Scholar
  27. Peuquet D (2002) Representations of space and time. Guilford, New YorkGoogle Scholar
  28. Peuquet DJ, Duan N (1995) An event-based spatio-temporal data model (ESTDM) for temporal analysis of geographic data. Int J Geogr Inf Syst 9(1):7–24CrossRefGoogle Scholar
  29. Raper J (2000) Multidimensional Geographic Information Science. Taylor & Francis, LondonCrossRefGoogle Scholar
  30. Rase WD (2000) Kartographische Animationen zur Visualisierung von Raum und Zeit. In: Strobl J, Blaschke T, Griesebner G (eds) Angewandte Geographische Informationsverarbeitung XII, Beiträge zum AGIT-Symposium Salzburg 2000. Wichmann Verlag, Heidelberg, pp 419–429Google Scholar
  31. Wachowicz M (1999) Object-oriented design for temporal GIS. Taylor & FrancisGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Planetary GeologyGerman Aerospace Center (DLR), Institute for Planetary ResearchBerlinGermany
  2. 2.Department of GeoinformaticsUniversity of SeoulDongdaemum-GuSouth Korea
  3. 3.Institute of Geological SciencesFreie Universitaet BerlinBerlinGermany

Personalised recommendations