Skip to main content

Bulk Nanostructured Metals for Innovative Applications

  • Chapter
  • First Online:
Bulk Nanostructured Materials with Multifunctional Properties

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

Very significant progress has been made in fabrication of bulk nanostructured materials in recent years, which is evident by the first production of advanced pilot articles from nanostructured metals with new functionality. These aspects of innovations of bulk nanostructured materials are discussed in this chapter. Possible applications of bulk nanostructured materials ranging from biomedical engineering to hydrogen storage to construction engineering are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some applications, such as the use of aluminum in automobile bodies, have taken much longer, despite clear advantages in materials properties. This lag can be caused by many factors, ranging from poor market education to technical obstacles to financial infeasibility.

References

  1. Eagar, T.: Bringing new materials to market. Tech. Rev. 98, 42–49 (1995)

    Google Scholar 

  2. Valiev, R.Z., Zehetbauer, M.J., Estrin, Y., Höppel, H.W., Ivanisenko, Y., Hahn, H., Wilde, G., Roven, H.J., Sauvage, X., Langdon, T.G.: The Innovation potential of bulk nanostructured materials. Adv. Eng. Mater. 9, 527–533 (2007)

    Article  Google Scholar 

  3. Lowe, T.C.: Metals and alloys nanostructured by severe plastic deformation: commercialization pathways. JOM 58, 28–32 (2006)

    Article  Google Scholar 

  4. Valiev, R.Z., Semenova, I.P., Latysh, V.L., Rack, H., Lowe, T.C., Petruzelka, J., Dluhos, L., Hrusak, D., Sochova, J.: Nanostructured titanium for biomedical applications. Adv. Eng. Mater. 10, B15–B17 (2008)

    Article  Google Scholar 

  5. Mishnaevsky Jr, L., Levashov, E., Valiev, R.Z., Segurado, J., Sabirov, I., Enikeev, N., Prokoshkin, S., Solov’yov, A.V., Korotitsky, A., Gutmanas, E., Gotman, I., Rabkin, E., Psakh’e, S., Dluhos, L., Seefeldt, M., Smolin, A.: Nanostructured titanium-based materials for medical implants: modeling and development. Mater. Sci. Eng., R 81, 1–19 (2014)

    Article  Google Scholar 

  6. Zheng, C.Y., Nie, F.L., Zheng, Y.F., Cheng, Y., Wei, S.C., Valiev, R.Z.: Enhanced in vitro biocompatibility of ultrafine-grained biomedical NiTi alloy with microporous surface. Appl. Surf. Sci. 257, 9086–9093 (2011)

    Article  Google Scholar 

  7. Zheng, C.Y., Nie, F.L., Zheng, Y.F., Cheng, Y., Wei, S.C., Ruan, L., Valiev, R.Z.: Enhanced corrosion resistance and cellular behavior of ultrafine-grained biomedical NiTi alloy with a novel SrO–SiO2–TiO2 sol–gel coating. Appl. Surf. Sci. 257, 5913–5918 (2011)

    Article  Google Scholar 

  8. Valiev, R.Z., Gunderov, D.V., Prokofiev, E.A., Pushin, V., Zhu, Y.T.: Nanostructuring of TiNi alloy by SPD processing for advanced properties. Mater. Trans. 49, 97–101 (2008)

    Article  Google Scholar 

  9. Lowe, T.C., Valiev, R.Z., Frontiers for bulk nanostructured metals in biomedical applications, In: Tiwari, A., Nordin, A.N. (eds.) Advanced Biomaterials and Biodevices. Wiley-Scrivener, London, pp 1–52

    Google Scholar 

  10. Zheng, Y.F., Gu, X.N., Witte, F.: Biodegradable metals. Mater. Sci. Eng. R. 77, 1–34 (2014)

    Article  Google Scholar 

  11. Ge, Q., Dellasega, D., Demir, A.G., Vedan, M.: The processing of ultrafine-grained Mg tubes for biodegradable stents. Acta Biomater. 9, 8604–8610 (2013)

    Article  Google Scholar 

  12. Mostaed, E., Vedani, M., Hashempour, M., Bestetti, M.: Influence of ECAP process on mechanical and corrosion properties of pure Mg and ZK60 magnesium alloy for biodegradable stent applications. Biomatter 4, e28283 (2014)

    Article  Google Scholar 

  13. EN 50183 (2002), Overhead Power Line Conductors—Bare Conductors of Aluminium Alloy with Magnesium and Silicon Content. European Standard

    Google Scholar 

  14. Press-release of RUSAL. RUSAL to produce nanostructured aluminium alloys. http://www.rusal.ru/en/press-center/news_details.aspx?id=11013&ibt=13&at=0

  15. Mann, V.Kh., Krokhin, A.Y., Matveeva, I.A., Raab, G.I., Murashkin, M.Y., Valiev, R.Z.: Nanostructured wire rod research and development. Light Metal Age, 32–34 (2014)

    Google Scholar 

  16. Cubero-Sesin, J.M., In, H., Arita, M., Iwaoka, H., Horita, Z.: High-pressure torsion for fabrication of high-strength and high-electrical conductivity Al micro-wires. J. Mater. Sci. 49, 6550–6556 (2014)

    Article  Google Scholar 

  17. Champion, Y., Brechet, Y.: Effect of grain size reduction and geometrical confinement in fine grained copper: potential applications as a material for reversible electrical contacts. Adv. Eng. Mater. 12, 798–802 (2010)

    Article  Google Scholar 

  18. Fátay, D., Révész, Á., Spassov, T.: Particle size and catalytic effect on the dehydriding of MgH2. J. Alloys Compd. 399, 237–241 (2005)

    Article  Google Scholar 

  19. Barkhordarian, G., Klassen, T., Borman, R.: Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. J. Alloys Compd. 364, 242–246 (2004)

    Article  Google Scholar 

  20. Skripnyuk, V.M., Rabkin, E., Estrin, Y., Lapovok, R.: Improving hydrogen storage properties of magnesium based alloys by equal channel angular pressing. Int. J. Hydrogen Energy 34, 6320–6324 (2009)

    Article  Google Scholar 

  21. Kusadome, Y., Ikeda, K., Nakamori, Y., Orimo, S., Horita, Z.: Hydrogen storage capability of MgNi2 processed by high pressure torsion. Scripta Mater. 57, 751–753 (2007)

    Article  Google Scholar 

  22. Revesz, A., Kanya, Zs, Verebelyi, T., Szabo, P.J., Zhilyaev, A.P., Spassov, T.: The effect of high-pressure torsion on the microstructure and hydrogen absorption kinetics of ball-milled Mg70Ni30. J. Alloys Compd. 504, 83–88 (2010)

    Article  Google Scholar 

  23. Valiev, R.Z., Langdon, T.G.: Achieving exceptional grain refinement through severe plastic deformation: new approaches for improving the processing technology. Metall. Mater. Trans. A 42, 2942–2951 (2011)

    Article  Google Scholar 

  24. Valiev, R.Z., Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater Sci. 51, 881–981 (2006)

    Article  Google Scholar 

  25. Zhilyaev, A.P., Langdon, T.G.: Prog. Mater. Sci. 53(6), 893–979 (2008)

    Article  Google Scholar 

  26. Pippan, R., Scheriau, S., Taylor, A., Hafok, M., Hohenwarter, A., Bachmaier, A.: Saturation of fragmentation during severe plastic deformation. Ann. Rev. Mater. Res. 40, 319–343 (2010)

    Article  Google Scholar 

  27. Ferrasse, S., Segal, V.M., Alford, F., Kardokus, J., Strothers, S.: Scale up and application of equal channel angular extrusion (ECAE) for the electronics and aerospace industries. Mater. Sci. Eng., A 493, 130–140 (2008)

    Article  Google Scholar 

  28. Ferrase, S., Alford, F., Grabmeier, S., Duvel, A., Zedlitz, R., Strothers, S., Evans, J., Daniels, B.: ECAE targets with sub-micron grain structures improve sputtering performance and cost-of-ownership. Technology White Paper (2003)

    Google Scholar 

  29. Qiao, X.G., Gao, N., Moktadir, Z., Kraft, M., Starink, M.J.: Fabrication of MEMS components using ultra fine grained aluminium. J. Micromech. Microeng. 20, 045029 (2010)

    Article  Google Scholar 

  30. Xu, J., Zhu, X., Shi, L., Shan, D., Guo, B., Langdon, T.G.: Micro-forming using ultrafine-grained aluminum processed by equal-channel angular pressing. Adv. Eng. Mater. (2015). doi:10.1002/adem.201400448

  31. Estrin, Y., Janecek, M., Raab, G.I., Valiev, R.Z., Zi, A.: Severe plastic deformation as a means of producing ultra-fine-grained net-shaped micro electro-mechanical systems parts. Metal. Mater. Trans. A. 38, 1906–1909 (2007)

    Article  Google Scholar 

  32. Stolyarov, V.V., Gunderov, D.V., Valiev, R.Z., Popov, A.G., Gaviko, V.S., Ermolenko, A.S.: Metastable nanostructured states in R2Fe14B-based alloys processed by severe plastic deformation. J. Magnet. Magnet. Mater. 196, 166–168 (1999)

    Article  Google Scholar 

  33. Popov, A.G., Gaviko, V.S., Shchegoleva, N.N., Shreder, L.A., Gunderov, D.V., Stolyarov, V.V., Li, W., Li, L.L., Zhang, X.Y.: Effect of high-pressure torsion deformation and subsequent annealing on structure and magnetic properties of overquenched melt-spun Nd9Fe85B6 alloy. J. Iron. Steel Res. Int. 13, 160–165 (2006)

    Article  Google Scholar 

  34. Menéndez, E., Sort, J., Langlais, V., Zhilyaev, A., Muñoz, J.S., Suriñach, S., Nogués, J., Baró, M.D.: Cold compaction of metal–ceramic (ferromagnetic–antiferromagnetic) composites using high pressure torsion. J. Alloys Compd. 434–435, 505–508 (2007)

    Article  Google Scholar 

  35. Korznikova, G.F., Korznikov, A.V.: Gradient submicrocrystalline structure in Fe–Cr–Co system hard magnetic alloys. Mater. Sci. Eng., A 503, 99–102 (2009)

    Article  Google Scholar 

  36. Korneva, A., Bieda, M., Korznikova, G., Sztwiertnia, K., Korznikov, A.: Microstructure and some properties of FeCr25Co15 alloy subjected to plastic deformation by complex load. J. Mater. Res. 99, 991–998 (2008)

    Google Scholar 

  37. Azushima, A., Kopp, R., Korhonen, A., Yang, D.Y., Micari, F., Lahoti, G.D., Groche, P., Yanagimoto, J., Tsuji, N., Rosochowski, A., Yanagida, A.: Severe plastic deformation (SPD) for metals. CIRP Ann—Manufact. Tech. 57, 716–735 (2008)

    Article  Google Scholar 

  38. Safiullin, A.R., Safiullin, R.V., Kruglov, A.A.: Application of nanostructured Ti alloys for producing a face for a gold club. Rev. Adv. Mater. Sci. 25, 281–285 (2010)

    Google Scholar 

  39. Zhernakov, V.S., Yakupov, R.G.V.: Calculation of bolt and rivet type connections at high temperatures and dynamic loads. MAI Publisher, Thailand, p 218 (1997)

    Google Scholar 

  40. Yanagida, A., Joko, K., Azushima, A.: Formability of steels subjected to cold ECAE processes. J. Mater. Process. Tech. 201, 390–394 (2008)

    Article  Google Scholar 

  41. Valiev, R.Z., Sabirov, I., Zhilyaev, A.P., Langdon, T.G.: Bulk nanostructured metals for innovative applications. JOM 64, 1134–1142 (2012)

    Google Scholar 

  42. Valiev, R.Z., Zhilyaev, A.P., Langdon, T.G.: Bulk Nanostructured Materials: Fundamentals and Applications. John Wiley & Sons Inc, p 456 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sabirov .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 I. Sabirov, N.A. Enikeev, M. Yu. Murashkin, and R. Z. Valiev

About this chapter

Cite this chapter

Sabirov, I., Enikeev, N.A., Murashkin, M.Y., Valiev, R.Z. (2015). Bulk Nanostructured Metals for Innovative Applications. In: Bulk Nanostructured Materials with Multifunctional Properties. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-19599-5_4

Download citation

Publish with us

Policies and ethics