Skip to main content

Nanostructures in Materials Subjected to Severe Plastic Deformation

  • Chapter
  • First Online:
Bulk Nanostructured Materials with Multifunctional Properties

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

The chapter focuses on microstructural features of bulk nanostructured materials. The main principles of nanostructural design using severe plastic deformation techniques are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valiev, R.Z., Krasilnikov, N.A., Tsenev, N.K.: Plastic deformation of alloys with submicron-grained structure. Mater. Sci. Eng. A 137, 35 (1991)

    Article  Google Scholar 

  2. Valiev, R.Z., Korznikov, A.V., Mulyukov, R.R.: Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng. A 186, 141 (1993)

    Article  Google Scholar 

  3. Valiev, R.Z.: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004)

    Article  Google Scholar 

  4. Sauvage, X., Wilde, G., Divinski, S.V., Horita, Z., Valiev, R.Z.: Grain boundaries in ultrafine grained materials processed by severe plastic deformation and relared phenomena. Mater. Sci. Eng. A 1, 540 (2012)

    Google Scholar 

  5. Suresh, S. (ed.): The millennium special issue. A selection of major topics in materials science and engineering: current status and future directions. Acta Mater. 48, 1–384 (2000)

    Google Scholar 

  6. Ivanisenko, Y., Darbandi, A., Dasgupta, S., Kruk, R., Hahn, H.: Bulk nanostructured materials: non-mechanical synthesis. Adv. Eng. Mater. 12, 666 (2010)

    Article  Google Scholar 

  7. Horita, Z.: In: Horita, Z. (ed.) Proceedings of International Symposium on Giant Straining Process for Advanced Materials, Fukuoka (2011)

    Google Scholar 

  8. Sabirov, I., Murashkin, M.Y., Valiev, R.Z.: Nanostructured aluminium alloys produced by severe plastic deformation: new horizons in development. Mater. Sci. Eng. A 560, 1 (2013)

    Article  Google Scholar 

  9. Valiev, R.Z., Langdon, T.G.: The art and science of tailoring materials by nanostructuring for advanced properties using SPD techniques. Adv. Eng. Mater. 12, 677 (2010)

    Article  Google Scholar 

  10. Estrin, Y., Vinogradov, A.V.: Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 61, 782 (2013)

    Article  Google Scholar 

  11. Valiev, R.Z., Alexandrov, I.V.: Bulk Nanostructured Metallic Materials: production, structure and properties, p. 398. Moscow, Akademkniga Pub (2007)

    Google Scholar 

  12. Valiev, R.Z., Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater Sci. 51, 881 (2006)

    Article  Google Scholar 

  13. Nurislamova, G., Sauvage, X., Murashkin, M., Islamgaliev, R., Valiev, R.Z.: Nanostructure and related mechanical properties of an Al-Mg-Si alloy processed by severe plastic deformation. Philos. Mag. Lett. 88, 459 (2008)

    Article  Google Scholar 

  14. Sha, G., Wang, Y.B., Liao, X.Z., Duan, Z.C., Ringer, S.P., Langdon, T.G.: Influence of equal-channel angular pressing on precipitation in an Al–Zn–Mg–Cu alloy. Acta Mater. 57, 3123 (2009)

    Article  Google Scholar 

  15. Valiev, R.Z.: Nanostructuring of metallic materials by SPD processing for advanced properties. Int. J. Mater. Res. 100, 757 (2009)

    Article  Google Scholar 

  16. Valiev, R.Z., Islamgaliev, R.K., Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater Sci. 45, 103 (2000)

    Article  Google Scholar 

  17. Zhilyaev, A.P., Langdon, T.G.: Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater Sci. 53, 893 (2008)

    Article  Google Scholar 

  18. Valiev, R.Z., Zhilyaev, A.P., Langdon, T.G.: Bulk Nanostructured Materials: Fundamentals and Applications. Wiley, New York (2014)

    Google Scholar 

  19. Ungar, T., Balogh, L., Zhu, Y.T., Horita, Z., Xu, C., Langdon, T.G.: Using X-ray microdiffraction to determine grain sizes at selected positions in disks processed by high pressure torsion. Mater. Sci. Eng. A 444, 153 (2007)

    Article  Google Scholar 

  20. Valiev, R.Z., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J., Zhu, Y.T.: Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58(4), 33 (2006)

    Article  Google Scholar 

  21. Zehetbauer, M.J.: Nanomaterials by severe plastic deformation (SPD). Adv. Eng. Mater. 5, 251916-1–251916-3 (2003)

    Google Scholar 

  22. Gutkin, M.Y., Ovidko, I.A.: Grain boundary migration as rotational deformation mode in nanocrystalline materials. Appl. Phys. Lett. 87, 251916-1 (2005)

    Google Scholar 

  23. Kurmanaeva, L., Ivanisenko, Yu., Markmann, J., Kubel, C., Chuvilin, A., Doyle, S., Valiev, R.Z., Fecht, H.-J.: Grain refinement and mechanical properties in ultrafine-grained Pd and Pd–Ag alloys produced by HPT. Mater. Sci. Eng. A 527, 1776 (2010)

    Article  Google Scholar 

  24. Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 (1989)

    Article  Google Scholar 

  25. Gleiter, H.: Nanostructured materials: basic concepts and microstructure. Acta Mater. 48, 1 (2000)

    Article  Google Scholar 

  26. Valiev, R.Z.: On grain boundary engineering of UFG metals and alloys for enhancing their properties. Mater. Sci. Forum 22, 584–586 (2008)

    Google Scholar 

  27. Grabski, M.W.: Mechanical properties of internal interfaces. J. Phys. 46(C4/4), 567 (1985)

    Google Scholar 

  28. Valiev, R.Z., Gertsman, VYu., Kaibyshev, O.A.: Grain boundary structure and properties under external influences. Phys. Stat. Sol. A 97(11), 11 (1986)

    Article  Google Scholar 

  29. Nazarov, A.A., Romanov, A.E., Valiev, R.Z.: On the structure, stress fields and energy of non-equilibrium grain boundaries. Acta Metall. Mater. 41, 1033 (1993)

    Article  Google Scholar 

  30. Nazarov, A.A., Romanov, A.E., Valiev, R.Z.: Incorporation model for the spreading of extrinsic grain boundary dislocations. Scripta Metall. Mater. 24, 1929 (1990)

    Article  Google Scholar 

  31. Horita, Z., Smith, D.J., Furukawa, M., Nemoto, M., Valiev, R.Z., Langdon, T.G.: An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. J. Mater. Res. 11, 1880 (1996)

    Article  Google Scholar 

  32. Valiev, R.Z., Islamgaliev, R.K., Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater Sci. 45, 103 (2000)

    Article  Google Scholar 

  33. Valiev, R.Z., Nazarov, A.A.: In: Zehetbauer, M.J., Zhu, Y.T. (eds.) Bulk Nanostructured Materials, p. 21. Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim (2009)

    Chapter  Google Scholar 

  34. Valiev, R.Z., Kozlov, E.V., Ivanov, YuF, Lian, J., Nazarov, A.A., Baudelet, B.: Deformation behaviour of ultra-fine-grained copper. Acta Metall. Mater. 42, 2467 (1994)

    Article  Google Scholar 

  35. Dinda, G.P., Rösner, H., Wilde, G.: Synthesis of bulk nanostructured Ni, Ti and Zr by repeated cold-rolling. Scripta Mater. 52, 577 (2005)

    Article  Google Scholar 

  36. Wilde, G., Rösner, H., Dinda, G.P.: Synthesis of bulk nanocrystalline materials by repeated cold-rolling. Adv. Eng. Mater. 7, 11 (2005)

    Article  Google Scholar 

  37. Divinski, S.V., Reglitz, G., Rösner, H., Wilde, G., Estrin, Y.: Self-diffusion in Ni prepared by severe plastic deformation: effect of non-equilibrium grain boundary state. Acta Mater. 59, 1974 (2011)

    Article  Google Scholar 

  38. Hÿtch, M.J., Snoeck, E., Kilaas, R.: Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131 (1998)

    Article  Google Scholar 

  39. Rösner, H., Boucharat, N., Padmanabhan, K.A., Markmann, J., Wilde, G.: Strain mapping in a deformation-twinned nanocrystalline Pd grain. Acta Mater. 58, 2610 (2010)

    Article  Google Scholar 

  40. Wilde, G., Ribbe, J., Reglitz, G., Wegner, M., Rösner, H., Estrin, Y., Zehetbauer, M., Setman, D., Divinski, S.: Plasticity and grain boundary diffusion at small grain sizes. Adv. Eng. Mater. 12, 758 (2010)

    Article  Google Scholar 

  41. Zhu, Y.T., Liao, X.Z., Wu, X.L.: Deformation twinning in nanocrystalline materials. Prog. Mater Sci. 57, 1–62 (2012)

    Article  Google Scholar 

  42. Zhao, Y., Bingert, J.F., Liao, X., Cui, B., Han, K., Sergueeva, A.V., Mukherjee, A.K., Valiev, R.Z., Langdon, T.G., Zhu, Y.T.: Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv. Mater. 18, 2949 (2006)

    Article  Google Scholar 

  43. Chukin, M.V., Koptseva, H.V., Valiev, R.Z., Yakovleva, I.L., Zrnik, G., Covarik, T.: The diffraction submicroscopic analysis of the submicrocrystal and nanocrystal structure of constructional carbon steels after equal channel angle pressing and further deformation. Vestnik MGTU 1, 31 (2008)

    Google Scholar 

  44. Zhang, H.W., Huang, X., Pippan, R., Hansen, N.: Thermal behavior of Ni (99.967 % and 99.5 % purity) deformed to an ultra-high strain by high pressure torsion. Acta Mater. 58, 1698 (2010)

    Article  Google Scholar 

  45. Rajgarhia, R.K., Saxena, A., Spearot, D.E., Hartwig, K.T., More, K.L., Kenik, E.A., Meyer, H.: Microstructural stability of copper with antimony dopants at grain boundaries: experiments and molecular dynamics simulations. J. Mater. Sci. 45, 6707 (2010)

    Article  Google Scholar 

  46. Nurislamova, G., Sauvage, X., Murashkin, M., Islamgaliev, R., Valiev, R.: Nanostructure and related mechanical properties of an Al-Mg-Si alloy processed by severe plastic deformation. Phil. Mag. Lett. 88, 459 (2008)

    Article  Google Scholar 

  47. Sauvage, X., Murashkin, MYu., Valiev, R.Z.: Atomic scale investigation of dynamic precipitation and grain boundary segregation in a 6061 aluminium alloy nanostructured by ECAP. Kovove Mater. 49, 11 (2011)

    Google Scholar 

  48. Liddicoat, P.V., Liao, X.-Z., Zhao, Y., Zhu, Y.T., Murashkin, M.Y., Lavernia, E.J., Valiev, R.Z., Ringer, S.P.: Nanostructural hierarchy increases the strength of aluminium alloys. Nature Comm. 1, 63 (2010)

    Article  Google Scholar 

  49. Valiev, R.Z., Enikeev, N.A., Murashkin, MYu., Kazykhanov, V.U., Sauvage, X.: On the origin of extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scripta Mater. 63, 949 (2010)

    Article  Google Scholar 

  50. Valiev, R.Z., Murashkin, MYu., Bobruk, E.V., Raab, G.I.: Grain refinement and mechanical behavior of the Al alloy subjected to the new SPD technique. Mater. Trans. 50, 87 (2009)

    Article  Google Scholar 

  51. Murashkin, MYu., Sabirov, I., Kazykhanov, V.U., Bobruk, E.V., Dubravina, A.A., Valiev, R.Z.: Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC. J. Mater. Sci. 48, 4501 (2013)

    Article  Google Scholar 

  52. Valiev, R.Z., Murashkin, MYu., Sabirov, I.: A nanostructural design to produce high strength Al alloys with enhanced electrical conductivity. Scripta Mater. 76, 13–16 (2014)

    Article  Google Scholar 

  53. Sauvage, X., Murashkin, MYu., Valiev, R.Z.: Atomic scale investigation of dynamic precipitation and grain boundary segregation in a 6061 aluminium alloy nanostructured by ECAP. Kovove Mater. 49(1), 11 (2011)

    Google Scholar 

  54. Kim, W.J., Wang, J.Y., Choi, S.O., Choi, H.J., Sohn, H.T.: Synthesis of ultra high strength Al–Mg–Si alloy sheets by differential speed rolling. Mater. Sci. Eng., A 520, 23 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sabirov .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 I. Sabirov, N.A. Enikeev, M. Yu. Murashkin, and R. Z. Valiev

About this chapter

Cite this chapter

Sabirov, I., Enikeev, N.A., Murashkin, M.Y., Valiev, R.Z. (2015). Nanostructures in Materials Subjected to Severe Plastic Deformation. In: Bulk Nanostructured Materials with Multifunctional Properties. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-19599-5_2

Download citation

Publish with us

Policies and ethics