Skip to main content

Energy Infrastructure Planning in Cities and Territories, Quality Factors of Methods for Infrastructure Planning

  • Chapter
  • First Online:
  • 588 Accesses

Part of the book series: Energy Systems ((ENERGY))

Abstract

The objectives of this chapter are (1) Presentation of integrated energy planning in cities and territories, different phases, steps and general tasks. (2) Defining the energy infrastructure in cities and territories as a complex system . (3) Defining characteristic types of IEPCT Use Cases for implementation in the following chapters. (4) Describing the model building process by different model terms and according to energy planning processes. (5) Providing the general requirements and quality factors of methods or methodologies supporting energy infrastructure planning in cities and territories.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ouyang M (2014) Review on modeling and simulation of interdependent critical infrastructure systems. Reliab Eng Syst Saf 121:43–60. doi:10.1016/j.ress.2013.06.040

    Article  Google Scholar 

  2. Fiedorowicz K, Rzepka G (1977) Planning of the economic infrastructure. East Eur Econ 16(1)

    Google Scholar 

  3. Bond P (1999) Basic infrastructure for socio-economic development, environmental protection and geographical desegregation: South Africa’s unmet challenge. Geoforum 30(1):43–59. doi:10.1016/S0016-7185(98)00031-1

    Article  Google Scholar 

  4. Makkonen S (2005) Decision modelling tools for utilities in the deregulated energy market. Helsinki University of Technology

    Google Scholar 

  5. Bhatt V, Friley P, Lee J (2010) Integrated energy and environmental systems analysis methodology for achieving low carbon cities. J Renew Sustain Energy 2(3). doi:10.1063/1.3456367

  6. Mirakyan A, De Guio R (2013) Integrated energy planning in cities and territories: a review of methods and tools. Renew Sustain Energy Rev 22:289–297. doi:10.1016/j.rser.2013.01.033

    Article  Google Scholar 

  7. de Bruijn H, Herder PM (2009) System and actor perspectives on sociotechnical systems. IEEE Trans Syst Man Cybern Part A Syst Hum 39(5):981–992. doi:10.1109/tsmca.2009.2025452

    Article  Google Scholar 

  8. Hansman RJ, Christopher M, De Richard N, Renee R, Daniel R (2006) Research agenda for an integrated approach to infrastructure planning, design and management. IJCIS 2(2–3):146–159. doi:10.1504/ijcis.2006.009434

    Article  Google Scholar 

  9. Mirakyan A, De Guio R (2015) Modelling and uncertainties in integrated energy planning. Renew Sustain Energy Rev 46:62–69. doi:10.1016/j.rser.2015.02.028

    Article  Google Scholar 

  10. Zahn E (1991) Strategieunterstützngssysteme. In: Milling P (ed) Systemmanagement und Managementsysteme. Duncker & Humblot, Berlin

    Google Scholar 

  11. Refsgaard JC, Henriksen HJ (2004) Modelling guidelines—terminology and guiding principles. Adv Water Resour 27(1):71–82. doi:10.1016/j.advwatres.2003.08.006

    Article  Google Scholar 

  12. Hornby AS (2000) Oxford advanced learner’s dictionary. Oxford University Press, Oxford

    Google Scholar 

  13. Keren G, de Bruin WB (2005) On the assessment of decision quality: considerations regarding utility, conflict and accountability. In: Thinking: psychological perspectives on reasoning, judgment and decision making. Wiley, New York, pp 347–363. doi:10.1002/047001332X.ch16

  14. Kamruzzaman M (2007) Enhancing the quality of decision making? In: Introducing spatial multi criteria evaluation for boundary conflict resolution in the Philippines. International Insitute for Geo-information Science and Earth Observation, The Netherlands

    Google Scholar 

  15. Allen PM (1997) Cities and regions as self-organizing systems: models of complexity. Gordon and Breach Science Publishers

    Google Scholar 

  16. Flavin C (1984) Electricity’s future: the shift to efficiency and small-scale power, 61. Worldwatch Institute, Washington, DC

    Google Scholar 

  17. Forrester JW (1970) Urban dynamics. MIT Press, Cambridge (3 print/XIII)

    Google Scholar 

  18. Brief diagnosis of the energy and environment context of Singapore (2010) EIFER-Technical report, Karlsruhe

    Google Scholar 

  19. Schmidt S et al (2012) Mexico waste to energy model. Technical report, EIFER, Karlsruhe

    Google Scholar 

  20. Wene C-O, Rydén B (1989) A comprehensive energy model in the municipal energy planning process. Math Comput Model 12(8):1050. doi:10.1016/0895-7177(89)90223-9

    Article  Google Scholar 

  21. Gunnarsson-ÖStling U, HÖJer M (2011) Scenario planning for sustainability in Stockholm, Sweden: environmental justice considerations. Int J Urban Reg Res 35(5):1048–1067. doi:10.1111/j.1468-2427.2010.01002.x

    Google Scholar 

  22. Cai YP, Huang GH, Yang ZF, Tan Q (2009) Identification of optimal strategies for energy management systems planning under multiple uncertainties. Appl Energy 86(4):480–495. doi:10.1016/j.apenergy.2008.09.025

    Article  Google Scholar 

  23. Løken E (2007) Use of multicriteria decision analysis methods for energy planning problems. Renew Sustain Energy Rev 11(7):1584–1595. doi:10.1016/j.rser.2005.11.005

    Article  Google Scholar 

  24. IEA (2000) ANNEX 33. Adv Local Energy Plan Methodol (ALEP), A Guidebook

    Google Scholar 

  25. Fielden D, Jacques JK (1998) Systemic approach to energy rationalisation in island communities. Int J Energy Res 22(2):107–129. doi:10.1002/(sici)1099-114x(199802)22:2<107:aid-er289>3.0.co;2-u

    Article  Google Scholar 

  26. Rotmans J, Van Asselt MBA (2000) Towards an integrated approach for sustainable city planning. J Multi-Criteria Decis Anal 9(1–3):110–124. doi:10.1002/1099-1360(200001/05)9:1/3<110:aid-mcda270>3.0.co;2-f

    Article  Google Scholar 

  27. Cormio C, Dicorato M, Minoia A, Trovato M (2003) A regional energy planning methodology including renewable energy sources and environmental constraints. Renew Sustain Energy Rev 7(2):99–130. doi:10.1016/S1364-0321(03)00004-2

    Article  Google Scholar 

  28. Yin Y, Cohen S, Huang GH (2000) Global climate change and regional sustainable development: the case of Mackenzie basin in Canada. Integr Assess 21(26)

    Google Scholar 

  29. Sarafidis Y, Diakoulaki D, Papayannakis L, Zervos A (1999) A regional planning approach for the promotion of renewable energies. Renew Energy 18(3):317–330

    Article  Google Scholar 

  30. Williams PM (2002) Community strategies: mainstreaming sustainable development and strategic planning? Sustain Dev 10(4):197–205. doi:10.1002/sd.197

    Article  Google Scholar 

  31. Ivner J (2009) Do decision-making tools lead to better energy planning?. Linköping University, Linköping

    Google Scholar 

  32. Polatidis H, Haralambopoulos DA, Munda G, Vreeker R (2006) Selecting an appropriate multi-criteria decision analysis technique for renewable energy planning. Energy Sour Part B Econ Plan Policy 1(2):181–193. doi:10.1080/009083190881607

    Article  Google Scholar 

  33. Neves LMP, Martins AG, Antunes CH (2004) Using SSM to rethink the analysis of energy efficiency initiatives. J Oper Res Soc 55(9):968–975. doi:10.1057/palgrave.jors.2601763

    Article  Google Scholar 

  34. Ramachandra TV (2009) RIEP: regional integrated energy plan. Renew Sustain Energy Rev 13(2):285–317. doi:10.1016/j.rser.2007.10.004

    Article  Google Scholar 

  35. Graeber B, Spalding-Fecher DR (2000) Regional integrated resource planning and its role in regional electricity co-operation and development in Southern Africa. Energy Sustain Dev 4(2):32–37. doi:10.1016/S0973-0826(08)60240-9

    Article  Google Scholar 

  36. Lam HL, Varbanov PS, Klemes JJ (2011) Regional renewable energy and resource planning. Appl Energy 88(2):545–550. doi:10.1016/j.apenergy.2010.05.019

    Article  Google Scholar 

  37. Coelho D, Antunes CH, Martins AG (2010) Using SSM for structuring decision support in urban energy planning. Technol Econ Dev Econ 16(4):641–653. doi:10.3846/tede.2010.39

    Article  Google Scholar 

  38. Mirakyan A, Lelait L, Khomenko N, Kaikov I (2009) Methodological framework for the analysis and development of a sustainable, integrated, regional energy plan—a French region case study. In: Paper presented at the EcoMod, Ottawa

    Google Scholar 

  39. Butera FM (1998) Moving towards municipal energy planning—the case of Palermo: the importance of non-technical issues. Renew Energy 15(1–4):349–355. doi:10.1016/S0960-1481(98)00185-2

    Article  Google Scholar 

  40. Trutnevyte E, Stauffacher M, Scholz RW (2012) Linking stakeholder visions with resource allocation scenarios and multi-criteria assessment. Eur J Oper Res 219(3):762–772. doi:10.1016/j.ejor.2012.01.009

    Article  Google Scholar 

  41. Rotmans J, van Asselt M, Vellinga P (2000) An integrated planning tool for sustainable cities. Environ Impact Assess Rev 20(3):265–276

    Article  Google Scholar 

  42. Glasson J (1992) The fall and rise of regional planning in the economically advanced nations. Urban Stud 29(3–4):505–531. doi:10.1080/00420989220080551

    Article  Google Scholar 

  43. Mirakyan A, Khomenko N, Lelait L, Kaikov I (2009) The potential of OTSM-TRIZ as a frameworking method for modern regional, integrated energy planning and modeling. In: Paper presented at the the fifth TRIZ symposium in Japan, Tokyo

    Google Scholar 

  44. Terrados J, Almonacid G, Hontoria L (2007) Regional energy planning through SWOT analysis and strategic planning tools.: impact on renewables development. Renew Sustain Energy Rev 11(6):1275–1287. doi:10.1016/j.rser.2005.08.003

    Article  Google Scholar 

  45. Nicholas Lenssen (1996) Local integrated resource planning: a new tool for a competitive era. Electr J 9(6):26–36

    Article  Google Scholar 

  46. Linkov I, Varghese A, Jamil S, Seager T, Kiker G, Bridges T (2005) Multi-criteria decision analysis: a framework for structuring remedial decisions at contaminated sites comparative risk assessment and environmental decision making. In: Linkov I, Ramadan A (eds) NATO science series IV: earth and environmental sciences, vol 38. Springer, Netherlands, pp 15–54. doi:10.1007/1-4020-2243-3_2

  47. Timmermans D, Vlek C (1996) Effects on decision quality of supporting multi-attribute evaluation in groups. Organ Behav Hum Decis Process 68(2):158–170. doi:10.1006/obhd.1996.0096

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atom Mirakyan .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mirakyan, A., De Guio, R. (2015). Energy Infrastructure Planning in Cities and Territories, Quality Factors of Methods for Infrastructure Planning. In: Three Domain Modelling and Uncertainty Analysis. Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-19572-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19572-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19571-1

  • Online ISBN: 978-3-319-19572-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics