Skip to main content

Mercury and Venus: Significant Results from MESSENGER and Venus Express Missions

  • Chapter
  • First Online:
Inner Solar System
  • 1276 Accesses

Abstract

Understanding how the solar system evolved has been one of the driving reasons for exploring the solar system until recently. Now the focus includes planets around other stars and particularly terrestrial planets and habitability. Mercury and Venus are two extreme members in our solar system but are poorly understood. Our closest planetary neighbors, with their proximity to the sun made it challenging to learn much about them from telescopes, as they are accessible for only a short time before sunrise or after sunset for large telescopes (due to scattered light and sensitive detectors). Venus with it global cloud cover made it impossible to learn about its surface, until new advances in radar and microwave techniques. Only partly surveyed by Mariner 10 from three fly-bys during 1974–1976, Mercury remained enigmatic until MESSENGER. By contrast, Venus has been explored from fly-by spacecraft, orbiters, entry probes and landers and even balloons, yet the major science questions have only become sharper. MESSENGER and Venus Express, the two current spacecraft visitors from Earth to the innermost, entered the final phase of their mission lives in summer 2014 as the fuel required for orbit maintenance was depleted. Orbiting Venus since 15 April 2006, Venus Express conducted an aerobraking experiment in June 2014. It collected its last observations on 27 November 2014 when the fuel was exhausted during orbit raise maneuvers, and the spacecraft entered the atmosphere on 18 January 2015. Over more than eight years of observing Venus from its 24 h, polar elliptic orbit, it collected a large amount of data from its operating instruments which have provided new insights into the atmosphere of Venus and to a limited extent, its surface. The MESSENGER spacecraft also observed Venus on its third fly-by of Venus which also yielded some new results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asphaug E, Reufer A (2014) Mercury and other iron-rich planetary bodies as relics of inefficient accretion. Nat Geosci. doi:10.1038/ngeo2189

    Google Scholar 

  • Bazilevskiy A, Ignatiev N, Markiewicz W, Head J, Titov D, Shalygin EV (2014) Volcanism of Venus: insights from the VMC data analysis. In: 40th COSPAR scientific assembly. Held 2–10 August 2014, in Moscow, Russia, Abstract B0.7-1-14

    Google Scholar 

  • Blewett DT, Chabot NL, Denevi BW, Ernst CM, Head JW, Izenberg NR, Murchie SL, Solomon SC, Nittler LR, McCoy TJ, Xiao Z, Baker DMH, Fassett CI, Braden SE, Oberst J, Scholten F, Preusker F, Hurwitz DM (2011) Hollows on Mercury: MESSENGER evidence for geologically recent volatile-related activity. Science 333(6051):1856–1859. doi:10.1126/science.1211681

  • Bolmatov D, Zav’yalov D, Gao M, Zhernenkov M (2014) Structural evolution of supercritical CO2 across the Frenkel line, Bo. J Phys Chem Lett 5(16):2785–2790. doi:10.1021/jz5012127

  • Bondarenko NV, Head JW, Ivanov MA (2010) Present‐day volcanism on Venus: evidence from microwave radiometry. Geophys Res Lett 37:L23202. doi:10.1029/2010GL045233

  • Byrne PK, Klimczak C, Williams DA, Hurwitz DM, Solomon SC, Head JW, Preusker F, Oberst J (2013) An assemblage of lava flow features on Mercury. J Gephys Res. doi:10.1002/jgre.20052

  • Byrne PK, Klimczak C, Şengör AMC, Solomon SC, Watters TR, SA Hauck II (2014) Mercury’s global contraction much greater than earlier estimates. Nat Geosci 7:301–307 doi:10.1038/ngeo2097

  • Cavanaugh JF, Smith JC, Sun XI, Bartels AE, Ramos-Izquierdo L, Krebs DJ, McGarry JF, Trunzo R, Novo-Gradac AM, Britt JL, Karsh J, Katz RB, Lukemire AT, Szymkiewicz R, Berry DL, Swinski JP, Neumann GA, Zuber MT, Smith DE (2007) The Mercury laser altimeter instrument for the MESSENGER mission. Space Sci Rev 131(1):451–479. doi:10.1007/s11214-007-9273-4

  • Chabot et al. (2014) Images of surface volatiles in Mercury’s polar craters acquired by the MESSENGER spacecraft. Geology 42(10)

    Google Scholar 

  • Dutton CE (1874) A criticism of the contractional hypothesis. Am J Sci 8:113–123

    Article  Google Scholar 

  • Ernst CM, Murchie SL, Barnouin OS, Robinson MS, Denevi BW, Blewett DT, Head JW, Izenberg NR, Solomon SC, Head JW (2010) Exposure of spectrally distinct material by impact craters on Mercury: implications for global stratigraphy. Icarus 209:210–223

    Article  Google Scholar 

  • Esposito LW (1984) Sulfur dioxide - Episodic injection shows evidence for active Venus volcanism, Science. Science 223:1072–1074. (ISSN 0036-8075) doi:10.1126/science.223.4640.1072

  • Esposito LW, Copley M, Eckert MR, Gates L, Stewart AIF, Worden H (1988) Sulfur dioxide at the Venus cloud tops, 1978–1988. J Geophys Res 93:5267–5276

    Google Scholar 

  • Ford PG, Pettengill GH (1992) Venus topography and kilometer-scale slopes. J Geophys Res 97:13103–13114

    Google Scholar 

  • Garate-Lopez I, Hueso R, Sánchez-Lavega A, Peralta J, Piccioni G, Drossart P (2013) A chaotic long-lived vortex at the southern pole of Venus. Nat Geosci 6:254–257. doi:10.1038/ngeo1764

    Article  Google Scholar 

  • Gérard J-C, Cox C, Saglam A, Bertaux J-L, Villard E, Nehmé C (2008) Limb observations of the ultraviolet nitric oxide nightglow with SPICAV on board Venus Express. J Geophys Res Planet 113(E5). doi:10.1029/2008JE003078

  • Goudge TA, Head JW, Kerber L, Blewett DT, Denevi BW, Domingue DL, Gillis-Davis JJ, Gwinner K, Helbert J, Holsclaw GM, Izenberg NR, Klima RL, McClintock WE, Murchie SL, Neumann GA, Smith DE, Strom RG, Xiao Z, Zuber MT, Solomon SC (2014) Global inventory and characterization of pyroclastic deposits on Mercury: new insights into pyroclastic activity from MESSENGER orbital data. J Geophys Res doi:10.1002/2013JE004480 (Article first published online: 28 MAR 2014)

  • Hawkins III SE et al (2007) The Mercury dual imaging system on the MESSENGER spacecraft. Space Sci Rev 131:247–338

    Google Scholar 

  • Kerber L, Head JW, Solomon SC, Murchie SL, Blewett DT, Wilson L (2009) Explosive volcanic eruptions on Mercury: Eruption conditions, magma volatile content, and implications for interior volatile abundances. Earth Planet Sci Lett 285(3–4):263–271. doi:10.1016/j.epsl.2009.04.037

  • Kerber L, Head JW, Blewett DT, Solomon SC, Wilson L, Murchie S, Robinson MS, Denevi BW, Domingue DL (2011) The global distribution of pyroclastic deposits on Mercury: the view from MESSENGER flybys 1–3. Planet Space Sci 59:1895–1909

    Article  Google Scholar 

  • Killen R, Cremonese G, Lammer H et al (2007) Processes that promote and deplete the exosphere of Mercury. Space Sci Rev 132(2–4):433–509. doi:10.1007/s11214-007-9232-0

    Article  Google Scholar 

  • Khatuntsev IV, Patsaeva MV, Titov DV, Ignatiev NI, Turin AV, Limaye SS, Markiewicz WJ, Almeida M, Roatsch TH, Moissl R (2013) Cloud level winds from the Venus Express Monitoring Camera imaging. Icarus 226(1):140–158. http://dx.doi.org/10.1016/j.icarus.2013.05.018

  • Kouyama T, Imamura T, Nakamura M, Satoh T, Futaana Y (2013) Long-term variation in the cloud-tracked zonal velocities at the cloud top of Venus deduced from Venus Express VMC images. J Geophys Res Planet 118:37–46. doi: 10.1029/2011JE004013

  • Lawrence DJ, Feldman WC, Goldsten JO, Maurice S, Peplowski PN, Anderson BJ, Bazell D, McNutt RL, Nittler LR, Prettyman TH, Rodgers DJ, Solomon SC, Weider SZ (2013) Evidence for water ice near Mercury’s North pole from MESSENGER neutron spectrometer measurements. Science 292–296 (Published online 29 November 2012)

    Google Scholar 

  • Leverington DW (2004) Volcanic rilles, streamlined islands, and the origin of outflow channels on Mars. J Geophys Res 109:E10011. doi:10.1029/2004JE002311

    Article  Google Scholar 

  • Limaye SS (2007) Venus atmospheric circulation: known and unknown. J Geophys Res 112:E04S09. doi:10.1029/2006JE002814

  • Limaye SS, Suomi VE (1981) Cloud motions on Venus: global structure and organization. J Atmos Sci 38:1220–1235

    Google Scholar 

  • Limaye SS, Kossin JP, Rozoff C, Piccioni G, Titov DV, Markiewicz WJ (2009) Vortex circulation on Venus: dynamical similarities with terrestrial hurricanes. Geophys Res Lett 36(4):L04204. doi:10.1029/2008GL036093

    Article  Google Scholar 

  • Linkin VM, Blamont J, Lipatov A, Devyatkin SI, D’yachkov AV, Ignatova B1, Kerzhanovich VV, Malique C, Stadnyk V1 et al (1986) Vertical thermal structure of the Venus atmosphere from temperature and pressure measurements. Pistma V Astron 12(2):100–105

    Google Scholar 

  • Lucey PG (2013) A wet and volatile Mercury. Science 282–283. doi:10.1126/science.1232556

  • Luz D et al (2011) Venus’s southern polar vortex reveals precessing circulation. Science 332:577–580

    Article  Google Scholar 

  • Mahieux et al (2012) J Geophys Res Planet 117:E07001. doi:10.1029/2012JE004058

    Google Scholar 

  • Margot JL, Peale SJ, Jurgens RF, Slade MA, Holin IV (2007) Large longitude libration of Mercury reveals a molten core. Science 316:710–714

    Article  Google Scholar 

  • Marcq E, Bertaux J-L, Montmessin F, Belyaev D (2013) Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere. Nat Geosci 6:25–28. doi:10.1038/ngeo1650

  • Migliorini A, Altieri F, Zasova L, Piccioni G, Bellucci G, Cardesın Moinelo A, Drossart P, D’Aversa E, CarrozzoFG, Gondet B, Bibring J-P (2011) Oxygen airglow emission on Venus and Mars as seen by VIRTIS/VEX and OMEGA/MEX imaging spectrometers. Planet Space Sci 59:981–987

    Google Scholar 

  • Montmessin F, Bertaux J-L, Lefèvre F, Marcq E, Belyaev D, Gérard J-C, Korablev O, Fedorova A, Sarago V, Vandaele AC (2011) A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus 216(I):82–85. http://dx.doi.org/10.1016/j.icarus.2011.08.010

  • Mueller N, Helbert J, Erard S, Piccioni G, Drossart P (2012) Rotation period of Venus estimated from Venus Express VIRTIS images and Magellan altimetry. Icarus 217(21):474–483

    Article  Google Scholar 

  • Murray BC, Strom RG, Trask NJ, Gault DE (1975) Surface history of Mercury: implications for terrestrial planets. J Geophys Res 80:2508–2514

    Google Scholar 

  • Nittler LR, Weider SZ, Starr RD, Chabot N, Denevi BW, Ernst CM, Goudge TA, Head JW, Helbert J, Klima RL, McCoy TJ, Solomon SC (2014), Sulfur-depleted composition of Mercury’s largest pyroclastic deposit: implications for explosive volcanism and surface reflectance on the innermost planet. Presented at the 45th Lunar and planetary science conference, held 17–21 March, 2014 at The Woodlands, Texas. LPI Contribution No. 1777, p 1391

    Google Scholar 

  • Oberbeck VR, Quaide WL, Arvidson RE, Aggarwal HR (1977) Comparative studies of lunar, Martian and Mercurian craters and plains. J Geophys Res 82. doi:10.1029/JB082i011p01681

  • Paige, DA et al (2013) Thermal stability of volatiles in the north polar region of Mercury. Science 339:300–303. doi:10.1126/science.1231106

  • Piccialli AS, Tellmann DV, Titov SS, Limaye IV, Khatuntsev M, Pätzold B, Häusler Titov DV (2012) Dynamical properties of the Venus mesosphere from the radio-occultation experiment VeRa onboard Venus Express. Icarus 217(2):669–681. http://dx.doi.org/10.1016/j.icarus.2011.07.016 (Advances in Venus Science)

  • Robinson MS, Lucey PG (1997) Recalibrated Mariner 10 color mosaics: implications for mercurian volcanism. Science 275:197–200

    Article  Google Scholar 

  • Schubert G (1983) General circulation and the dynamical state of the Venus atmosphere. In: Venus, Hunten D et al (eds) University of Arizona Press, vol 1143, p 1983

    Google Scholar 

  • Schubert G (2010) Venus rotation, Paper presented at the VEXAG. In: International Venus Workshop, 2010. venus.wisc.edu/venus-workshop-submission/files/schubert_gerald-2.pdf

    Google Scholar 

  • Seiff A (1987) Further information on structure of the atmosphere of Venus derived from VeGa balloon and lander mission. Adv Space Res 7(12):323–328. doi:10.1016/0273-1177(87)90239-0

  • Shalygin EV, Markiewicz WJ, Basilevsky AT, Titov DV, Ignatiev NI, Head JW Bright transient spots in ganiki chasma, Venus. Presented at the 45th Lunar and planetary science conference, held 17–21 March, 2014 at The Woodlands, Texas. LPI Contribution No. 1777, p 2556

    Google Scholar 

  • Slade MA, Butler BJ, Muhleman DO (1992) Mercury radar imaging: evidence for polar ice. Science 258:635–640

    Article  Google Scholar 

  • Smith DE, Zuber MT, Phillips RJ, Solomon SC, Hauck II SA, Lemoine FG, Mazarico E, Neumann GA, Peale SJ, Margot J-L, Johnson CL, Torrence MH, Perry ME, Rowlands DD, Goossens S, Head JW, Taylor AH (2012) Gravity field and internal structure of Mercury from MESSENGER. Science 336(6078):214–217. doi:10.1126/science.1218809

  • Smrekar SE, Stofan ER, Mueller N, Treiman A, Elkins-Tanton AL, Helbert J, Piccioni G, Drossart P (2010) Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328:605–608

    Google Scholar 

  • Solomon SC (2003) Mercury: the enigmatic innermost planet. Earth Planet Sci Lett 216:441–455

    Article  Google Scholar 

  • Soret L, J-C Gérard, Piccioni G, Drossart P (2014) Time variations of O2(a1Δ) nightglow spots on the Venus nightside and dynamics of the upper mesosphere. Icarus 237:306–314. doi:10.1016/j.icarus.2014.03.034

  • Staley D (1970) The adiabatic lapse rate in the Venus atmosphere. J Atmos Sci 27:219–223

    Google Scholar 

  • Strom RG, Trask JJ, Guest JE (1975) Tectonism and volcanism on Mercury. J Geophys Res 80:2478–2507

    Article  Google Scholar 

  • Suomi VE, Limaye SS (1978) Further evidence of vortex circulation on Venus. Science 201:1009–1011

    Google Scholar 

  • Svedhem H, Titov D, Taylor F, Witasse O (2009) Venus Express mission. J Geophys Res 114:E00B33. doi:10.1029/2008JE003290

  • Taylor FW (2006) Venus before Venus express. Planet Space Sci 2006:1249–1262

    Article  Google Scholar 

  • Taylor FW, Beer R, Chahine MT, Diner DJ, Elson LS, Haskins RD, McCleese DJ, Martonchik JV, Reichley PE, Bradley SP, Delderfield J, Schofield JT, Farmer CB, Froidevaux L, Leung J, Coffey MT, Gille JC (1980) Structure and meteorology of the middle atmosphere of Venus Infrared remote sensing from the Pioneer orbiter. J Geophys Res 85:7963–8006. http://dx.doi.org/10.1029/JA085iA13p07963

  • Vasavada AR, Paige DA, Wood SE (1999) Near-surface temperatures on mercury and the moon and the stability of polar ice deposits. Icarus 141(1999):179–193

    Article  Google Scholar 

  • Watson KB, Murray BC, Brown H (1961) The behavior of volatiles on the Lunar surface. J Geophys Res 66(9):3033–3045

    Google Scholar 

  • Watters TR, Robinson MS, Beyer RA, Banks ME, Bell III JF, Pritchard ME, Hiesinger H, van der Bogert CH, Thomas PC, Turtle EP, Williams NR (2010) Evidence of recent thrust faulting on the moon revealed by the Lunar Reconnaissance Orbiter Camera. Science 329(5994):936–940. doi:10.1126/science.1189590

  • Watters TR, Solomon SC, Klimczak C, Freed AM, Head JW, Ernst CM, Blair DM, Goudge RA, Byrne PK (2012) Extension and contraction within volcanically buried impact craters and basis on Mercury. Geology 40:1123–1126. doi:10.1130/G33725.1

    Article  Google Scholar 

  • Wetherill G (1994) Provenance of the terrestrial planets. Geochim Comochim Acta 58:4513–4520

    Article  Google Scholar 

  • Wilhelms DE (1976) Mercurian volcanism questioned. Icarus 28:551–558

    Article  Google Scholar 

Download references

Acknowledgments

I thank Ms. Rosalyn Pertzborn for editing the manuscript. This work was supported partially by NASA Grant NNX09AE85G, and by Space Science and Engineering Center, University of Wisconsin, Madison. Comments by two anonymous referees and Dr. A.B.S. Limaye were useful in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay S. Limaye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Limaye, S.S. (2015). Mercury and Venus: Significant Results from MESSENGER and Venus Express Missions. In: Badescu, V., Zacny, K. (eds) Inner Solar System. Springer, Cham. https://doi.org/10.1007/978-3-319-19569-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19569-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19568-1

  • Online ISBN: 978-3-319-19569-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics