Skip to main content

Deployable Structures for Venus Surface and Atmospheric Missions

  • Chapter
  • First Online:
Inner Solar System
  • 1343 Accesses

Abstract

“Venus, the “greenhouse planet”, is scientifically fascinating place.” (Landis G, NASA). Based on the fact of growing interest in Venus exploration, backed by the US National Academies of Sciences’ listing of the Earth’s “hellish twin” as one of the mission destinations with high priority, exploration mission architectures for Venus are expected to respond to operational expectations that are higher than the early period of Venus missions. High profile missions point out the need for more capable, more flexible, better designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiba H et al (1976) Feasibility study of buoyant venus station placed by inflated balloon entry, 27th international conference of astronomy. Anaheim, CA

    Google Scholar 

  • Baker C, Glaze L et al (2010a) Venus mobile explorer (VME): a mission concept study for the National Research Council Planetary Decadal Survey, 7th international planetary probe workshop, Barcelona

    Google Scholar 

  • Baker C, Glaze L et al (2010b) Venus intrepid tessera lander (VITAL): a mission concept study for The National Research Council Planetary Decadal Survey, NASA GSFC

    Google Scholar 

  • Baker C, Smith B, Prabhu D, Gage P, Glaze L (2013) Venus in situ explorer mission design using a mechanically deployed aerodynamic decelerator, IEEE explore, Accessed Jan 2014

    Google Scholar 

  • Ball AJ, Garry J, Lorenz R, Kerzhanovich V (2007) Planetary landers and entry probes. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Balint T et al (2007) Extreme environment technologies for future space science missions, Technical Report JPL D–32832. National Aeronautical and Space Administration, Washington, D.C

    Google Scholar 

  • Balint T, Cutts J (2009) Technologies for future venus exploration, White Paper to the NRC

    Google Scholar 

  • Basilevsky A et al (2007) Landing on Venus: past and future. J Planet Space Sci 55:2097–2112

    Article  Google Scholar 

  • BBC (2009) Venera-D Mission Report “Russia plots return to Venus”. http://news.bbc.co.uk/2/hi/science/nature/8294925.stm (May 2014)

  • Bienstock B (2003) Pioneer Venus and Galileo entry probe heritage. In: Proceedings of international workshop “Planetary probe atmospheric entry and descent trajectory analysis and science”, Lisbon

    Google Scholar 

  • Chassefière E et al (2002) The Lavoisier mission : a system of descent probe and balloon flotilla for geochemical investigation of the deep atmosphere and surface of Venus. Adv Space Res 29(2):255–264, Elsevier UK

    Google Scholar 

  • Chassefière E et al (2007) European Venus explorer (EVE), An in-situ mission to Venus, ESA cosmic vision proposal

    Google Scholar 

  • Clark IG et al (2009) Supersonic inflatable aerodynamic decelerators for use on future robotic missions to Mars. J Spacecraft Rockets 46(2)

    Google Scholar 

  • Colozza A (2004) Evaluation of solar powered flight on Venus, 2nd international energy conversion engineering conference, RI

    Google Scholar 

  • Colozza A (2012) Radioisotope stirling engine powered airship for low altitude operation on Venus, NASA/CR—2012-217665

    Google Scholar 

  • Cutts J et al (1999) Venus surface sample return: role of balloon technology, AIAA balloon technology conference, Norfolk, VA

    Google Scholar 

  • Cutts J, Balint T, Chassefière E, Kolawa E (2007) Technology perspectives in the future exploration of Venus, AGU

    Google Scholar 

  • Decadal survey inner planets sub-panel, VEXAG_Venus exploration analysis group. http://www.lpi.usra.edu/vexag/

  • Dyson R, Schmitz P et al (2009) Long-lived Venus conceptual lander design. The international energy conversion engineering conference, Denver, CO

    Google Scholar 

  • Esposito LW, Stofan E, Cravens T (2013) Exploring Venus as a terrestrial planet. Wiley, NJ, USA

    Google Scholar 

  • Evans M et al (2005) A Venus Rover capable of long life surface operations, 2005 AGU fall meeting, San Francisco, CA

    Google Scholar 

  • Ford PG, Pettengill GH (1992) Venus topography and kilometer-scale slopes. J Geophys Res 97:13103–13114

    Article  Google Scholar 

  • Griffin K (2013) Venus atmospheric maneuverable platform (VAMP): a concept for a long-lived airship at Venus, Northrop grumman aerospace public release, NGAS Case 13-1131

    Google Scholar 

  • Grossman L (2014) NASA ‘flying saucer’ for Mars to land in Hawaii. New Scientist, Elsevier, 222(2965)

    Google Scholar 

  • Guest SD (1994) Deployable structures: concepts and analysis, Dissertation submitted to University of Cambridge, UK

    Google Scholar 

  • Guynn MD et al (2003) Evolution of a Mars airplane concept for the ARES Mars scout mission, Paper AIAA 2003-6578, Second AIAA unmanned unlimited systems, technologies, and operations conference, 15–18 Sept 2003, San Diego, CA

    Google Scholar 

  • Hajos G et al (2005) An overview of wind-driven rovers for planetary exploration, 43rd AIAA aerospace sciences meeting, Reno, NV

    Google Scholar 

  • Hall J et al (2008) Prototype design and testing of a Venus long duration, high altitude balloon, Adv Space Res 42

    Google Scholar 

  • Hall J, Cutts J (2013) Venus aerial platform technology. Presentation at the Venus technology forum, JPL, CA

    Google Scholar 

  • Hall J, Yavrouian A (2013) Pinhole effects on Venus superpressure balloon lifetime. AIAA balloon systems conference, Daytona, FL

    Google Scholar 

  • Harvey B, Zakutnyaya O (2011) Russian space probes, Springer Praxis Books

    Google Scholar 

  • Haeuplik-Meusburger S, Ozdemir K (2012) Deployable lunar habitation design. In: Badescu V (ed) MOON: Prospective energy and material resources. Springer

    Google Scholar 

  • Ivanov MA (2001) Tessera terrains on Venus: a summary of the global distribution, characteristics and relation to surrounding units from Magellan data, J Geophys Res 101

    Google Scholar 

  • JPL NASA (2010) Surface and atmosphere geochemical explorer, facts sheet, online May 2014

    Google Scholar 

  • JPL NASA (2013) Low density supersonic decelerators, NASA fact sheet JPL 400-1530 6/13

    Google Scholar 

  • Kerzhanovic V et al (2000) Venus aerobot multisonde mission: atmospheric relay for imaging the surface of venus, IEEE

    Google Scholar 

  • Kerzhanovic V, Yavrounian A, Hall J, Cutts J (2005) Dual balloon concept for lifting payloads from the surface of Venus, AIAA 5th aviation, technology, integration and operations conference, AIAA-2005-7322

    Google Scholar 

  • Kerzhanovic V, Yavrounian A, Hall J et al (2008) Prototype design and testing of a Venus long duration, high altitude balloon. Adv Space Res 42:1648–1655

    Article  Google Scholar 

  • Kremnev RS et al (1986a) VEGA balloon system and instrumentation. Science 231(4744):1408

    Article  Google Scholar 

  • Kremnev RS et al (1986b) The Vega balloons—a tool for studying atmosphere dynamics on Venus. Sov Astron Lett 12(1):7

    Google Scholar 

  • Landis GA (2001) Exploring Venus by solar airplane, STAIF conference on space exploration technology, Albuquerque, NM

    Google Scholar 

  • Landis GA (2003) Colonization of Venus, conference on human space exploration, space technology & applications international forum, Albuquerque, NM

    Google Scholar 

  • Landis GA, LaMarre C, Colozza A (2003) Atmospheric flight on Venus: a conceptual design. J Spacecraft Rockets 40:672–677

    Article  Google Scholar 

  • Landis GA (2006) Robotic exploration of the surface and atmosphere of Venus, Acta Astronautica 59(570-406)

    Google Scholar 

  • Landis GA (2010) Low-altitude exploration of the Venus atmosphere by balloon, 48th AIAA aerospace sciences meeting, Orlando, FL

    Google Scholar 

  • Landis GA, Schmidt G, Oleson S (2011) HERRO missions to Mars and Venus using telerobotic surface exploration from orbit, AIAA Space Conference & Exposition, Long Beach, CA

    Google Scholar 

  • Landis GA, Colozza A et al (2013) A wind powered rover for a low-cost Venus mission, 51st AIAA aerospace sciences meeting, Grapewine, TX

    Google Scholar 

  • Landis GA (2012) Report on Zephyr Rover. http://www.nasa.gov/directorates/spacetech/niac/2012_phase_I_fellows_landis.html (May 2014)

  • Landis G et al (2013) Venus landsailer: a new approach to exploring our neighbor planet presentation. NASA Glenn, Cleveland, OH

    Google Scholar 

  • LASP SAGE mission website. http://lasp.colorado.edu/sage/ (May 2014)

  • Levine JS et al (2003) Science from a Mars airplane: the aerial regional scale environmental survey (ARES) of Mars, Paper AIAA 2003-6576, Second AIAA unmanned unlimited systems, technologies, and operations conference, San Diego, CA

    Google Scholar 

  • Lorenz R et al (2011) A stand-alone long-lived Venus lander mission concept, 8th international planetary probe workshop, Portsmouth, VA

    Google Scholar 

  • McRonald AD (1999) A light-weight inflatable hypersonic drag device for Venus entry, AAS/AIAA astrodynamics specialist conference, Girdwood, AK

    Google Scholar 

  • NASA (2008) Robotic exploration of Venus promotional video. http://www.youtube.com/watch?v=oet63vzBvkg (2014)

  • NASA (2012) News release on Zephyr Rover. http://www.nasa.gov/directorates/spacetech/home/feature_windsurfing.html#.U6XrkV4WfZs (May 2014)

  • NASA (2013a) Dynamic penetrator experiment data sheet. http://nssdc.gsfc.nasa.gov/nmc/experimentDisplay.do?id=1981-110D-10 (May 2014)

  • NASA (2013b) Vega balloon data sheet. http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=1984-128F (May 2014)

  • Ozdemir K, Haeuplik-Meusburger S, Gruber P, Imhof B, Antonietta M, Waclavicek R (2007) Deployable structures for a human lunar base, Elsevier

    Google Scholar 

  • Ozdemir K (2009) A methodical approach to the transfer and the integration of design knowledge from terrestrial extreme environment structure designs to inhabited space structure design concepts, PhD Thesis, Vienna University of Technology

    Google Scholar 

  • Pellegrino S (ed) (2002) Deployable structures. Springer, CISM International Center for Mechanical Sciences

    Google Scholar 

  • Sagdeev RZ et al (1986) The VEGA Venus balloon experiment. Science 231(4744):1407

    Article  Google Scholar 

  • Sagdeev RZ, Moroz VI (1986) Project vega first stage: missions to Venus. Sov Astron Lett 12(1)

    Google Scholar 

  • Sagdeev RZ et al (1986) The VEGA balloon experiments. Sov Astron Lett 12(1, 3)

    Google Scholar 

  • Smith BP et al (2010) A historical review of inflatable aerodynamic decelerator technology development, Aerospace conference 2010, IEEE

    Google Scholar 

  • Space studies board of National Research Council NRC (2003) New frontiers in the solar system, an integrated exploration strategy, Technical report, Washington, DC

    Google Scholar 

  • Squyres S et al (2011) Visions and voyages for Planetary Science in the Decade 2013-2022 (Decadal Survey). The National Academics Press, Washington, DC

    Google Scholar 

  • Sweetster T et al (2003) Venus sample return missions—a range of science, a range of costs. Elsevier

    Google Scholar 

  • Titov DV et al (2007) Venus express—the first European mission to Venus. Planet Space Sci 55:1636–1652

    Article  Google Scholar 

  • University of Cambridge, Structures Group Website, Department of Engineering. http://www-civ.eng.cam.ac.uk/dsl/ (May 2014)

  • Venera-D mission official website (2014). http://venera-d.cosmos.ru/

  • Venkatapathy E et al (2011) Going beyond rigid aeroshells: enabling Venus in-situ science missions with deployables, 8th international planetary probe workshop, Portsmouth, VA

    Google Scholar 

  • Zacny K, Bar-Cohen Y (2009) Drilling in extreme environments. Wiley-Vch Verlag, Weinheim

    Google Scholar 

  • Zadunaisky PE et al (1961) Experimental and theoretical results on the orbit of echo 1, SAO Special Report Issue 61

    Google Scholar 

  • Zasova LV et al (2007) Structure of the Venus atmosphere. Planet Space Sci 55:1712–1728

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Elif Erdogdu, Sandra Häuplik-Meusburger and Stephen Ransom for providing the visuals and conducting reviews respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ozdemir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ozdemir, K. (2015). Deployable Structures for Venus Surface and Atmospheric Missions. In: Badescu, V., Zacny, K. (eds) Inner Solar System. Springer, Cham. https://doi.org/10.1007/978-3-319-19569-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19569-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19568-1

  • Online ISBN: 978-3-319-19569-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics