Skip to main content

Dual Energy CT: Basic Principles

  • Chapter

Abstract

Computed tomography (CT), since its introduction in the 1970s, has not only revolutionized radiology, but made all diagnostic algorithms faster and more accurate: for example, the presence of a subdural hematoma in a trauma patient before the invention of CT could be just suspected after an accurate neurological examination and by the presence of a fracture of the skull on a conventional x-ray. Nowadays, a CT scan performed in few seconds clearly shows the presence and the characteristics of the lesion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literature

  1. Saba L, Suri J (2014) Multi-detector CT imaging: abdomen, pelvis and CAD applications. In: Flohr T, Schmidt B (eds) Dual energy computed tomography: tissue characterization. Taylor & Francis Group, LLC, Boca Raton, Fl, pp 553–562

    Google Scholar 

  2. Johnson TRC (2012) Dual-energy CT: general principles. AJR Am J Roentgenol 199:S3–S8

    Article  PubMed  Google Scholar 

  3. Marin D et al (2014) State of the art: dual-energy CT of the abdomen. Radiology 271(2)

    Google Scholar 

  4. Aran S et al (2014) Dual-energy computed tomography (DECT) in emergency radiology: basic principles, techniques, and limitations. Emerg Radiol 21:391–405

    Article  PubMed  Google Scholar 

  5. Agrawal MD et al (2014) Oncologic applications of dual-energy CT in the abdomen. Radiographics 34:589–612

    Article  PubMed  Google Scholar 

  6. Simons D et al (2014) Recent developments of dual-energy CT in oncology. Eur Radiol 24:930–939

    Article  PubMed  Google Scholar 

  7. Kraśnicki T et al (2012) Novel clinical applications of dual energy computed tomography. Adv Clin Exp Med 21(6):831–841

    PubMed  Google Scholar 

  8. Kaza RK, Platt JF, Cohan RH, Caoili EM, Al-Hawary MM, Wasnik A (2012) Dual-energy CT with single- and dual-source scanners: current applications in evaluating the genitourinary tract. Radiographics 32(2):353–369

    Article  PubMed  Google Scholar 

  9. Krauss B, Grant KL, Schmidt BT, Flohr TG (2015) The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency. Invest Radiol 50(2):114–118

    Article  PubMed  Google Scholar 

  10. Schenzle JC, Sommer WH, Neumaier K et al (2010) Dual energy CT of the chest: how about the dose? Invest Radiol 45:347–353

    PubMed  Google Scholar 

  11. Bauer RW, Kramer S, Renker M et al (2011) Dose and image quality at CT pulmonary angiography: comparison of first and second generation dual energy CT and 64-slice CT. Eur Radiol 21:2139–2147

    Article  PubMed  Google Scholar 

  12. Henzler T, Fink C, Schoenberg SO, Schoepf UJ (2012) Dual energy CT: radiation dose aspects. AJR Am J Roentgenol 199:S16–S25

    Article  PubMed  Google Scholar 

  13. Liu X, Ouyang D, Li H, Zhang R, Lv Y, Yang A, Xie C (2015) Papillary thyroid cancer: dual-energy spectral CT quantitative parameters for preoperative diagnosis of metastasis to the cervical lymph nodes. Radiology 275(1):167–176

    Article  PubMed  Google Scholar 

  14. Morgan MD (2010) GE Healthcare case study GSI lesion characterization

    Google Scholar 

  15. Grant KL, Flohr TG, Krauss B, Sedlmair M, Thomas C, Schmidt B (2014) Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Invest Radiol 49(9):586–592

    Article  PubMed  Google Scholar 

  16. Lewis M, Reid K, Toms AP (2013) Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT (DECT) in hip replacements. Skeletal Radiol 42(2):275–282

    Article  PubMed  Google Scholar 

  17. Guggenberger R, Winklhofer S, Osterhoff G, Wanner GA, Fortunati M, Andreisek G, Alkadhi H, Stolzmann P (2012) Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. Eur Radiol 22(11):2357–2364

    Article  CAS  PubMed  Google Scholar 

  18. De Cecco CN, Darnell A, Rengo M, Muscogiuri G, Bellini D, Ayuso C, Laghi A (2012) Dual-energy CT: oncologic applications. AJR Am J Roentgenol 199(5 Suppl):S98–S105

    Article  PubMed  Google Scholar 

  19. Uhrig M, Sedlmair M, Schlemmer HP, Hassel JC, Ganten M (2013) Monitoring targeted therapy using dual-energy CT: semi-automatic RECIST plus supplementary functional information by quantifying iodine uptake of melanoma metastases. Cancer Imaging 13(3):306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Knobloch G, Jost G, Huppertz A, Hamm B, Pietsch H (2014) Dual-energy computed tomography for the assessment of early treatment effects of regorafenib in a preclinical tumor model: comparison with dynamic contrast-enhanced CT and conventional contrast-enhanced single-energy CT. Eur Radiol 24(8):1896–1905

    Article  PubMed  Google Scholar 

  21. Apfaltrer P, Meyer M, Meier C, Henzler T, Barraza JM Jr, Dinter DJ, Hohenberger P, Schoepf UJ, Schoenberg SO, Fink C (2012) Contrast-enhanced dual-energy CT of gastrointestinal stromal tumors: is iodine-related attenuation a potential indicator of tumor response? Invest Radiol 47(1):65–70

    Article  CAS  PubMed  Google Scholar 

  22. Lu GM, Zhao Y, Zhang LJ, Schoepf UJ (2012) Dual-energy CT of the lung. AJR Am J Roentgenol 199(5 Suppl):S40–S53

    Article  PubMed  Google Scholar 

  23. Zhang LJ, Yang GF, Wu SY, Xu J, Lu GM, Schoepf UJ (2013) Dual-energy CT imaging of thoracic malignancies. Cancer Imaging 13:81–91

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Flohr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saba, L., Porcu, M., Schmidt, B., Flohr, T. (2015). Dual Energy CT: Basic Principles. In: De Cecco, C., Laghi, A., Schoepf, U., Meinel, F. (eds) Dual Energy CT in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-19563-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19563-6_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19562-9

  • Online ISBN: 978-3-319-19563-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics