Skip to main content

Imaging in Osteoarthritis

  • Chapter
Osteoarthritis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Resnick D, Niwayama G, Coutts RD. Subchondral cysts (geodes) in arthritic disorders: pathologic and radiographic appearance of the hip joint. AJR Am J Roentgenol. 1977;128(5):799–806.

    Article  CAS  PubMed  Google Scholar 

  2. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16(4):494–502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kellgren JH, Jeffrey MR, Ball J. The epidemiology of chronic rheumatism: atlas of standard radiographs. Oxford: Blackwell Scientific; 1963.

    Google Scholar 

  4. Lawrence JS. Rheumatism in populations. London: W.M. Heinemann Medical Books; 1977.

    Google Scholar 

  5. Schiphof D, Boers M, Bierma-Zeinstra SM. Differences in descriptions of Kellgren and Lawrence grades of knee osteoarthritis. Ann Rheum Dis. 2008;67(7):1034–6.

    Article  CAS  PubMed  Google Scholar 

  6. Schiphof D, et al. Impact of different descriptions of the Kellgren and Lawrence classification criteria on the diagnosis of knee osteoarthritis. Ann Rheum Dis. 2011;70(8):1422–7.

    Article  CAS  PubMed  Google Scholar 

  7. Felson DT, et al. The incidence and natural history of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum. 1995;38(10):1500–5.

    Article  CAS  PubMed  Google Scholar 

  8. Reijman M, et al. Body mass index associated with onset and progression of osteoarthritis of the knee but not of the hip: the Rotterdam Study. Ann Rheum Dis. 2007;66(2):158–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Felson DT, et al. Defining radiographic incidence and progression of knee osteoarthritis: suggested modifications of the Kellgren and Lawrence scale. Ann Rheum Dis. 2011;70(11):1884–6.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Brouwer GM, et al. Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee. Arthritis Rheum. 2007;56(4):1204–11.

    Article  CAS  PubMed  Google Scholar 

  11. Emrani PS, et al. Joint space narrowing and Kellgren-Lawrence progression in knee osteoarthritis: an analytic literature synthesis. Osteoarthritis Cartilage. 2008;16(8):873–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Felson DT, et al. A new approach yields high rates of radiographic progression in knee osteoarthritis. J Rheumatol. 2008;35(10):2047–54.

    PubMed Central  PubMed  Google Scholar 

  13. Hunter DJ, et al. The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. Arthritis Rheum. 2006;54(3):795–801.

    Article  CAS  PubMed  Google Scholar 

  14. Gale DR, et al. Meniscal subluxation: association with osteoarthritis and joint space narrowing. Osteoarthritis Cartilage. 1999;7(6):526–32.

    Article  CAS  PubMed  Google Scholar 

  15. Altman RD, Gold GE. Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthritis Cartilage. 2007;15 Suppl A:A1–56.

    Article  CAS  PubMed  Google Scholar 

  16. Hayashi D, Jarraya M, Guermazi A, et al. Frequency and fluctuation of susceptibility artifacts in the tibiofemoral joint space in painful knees on 3T MRI and association with meniscal tears, radiographic joint space narrowing and calcifications. Arthritis Rheum. 2012;64 Suppl 10:1030.

    Google Scholar 

  17. Culvenor AG, et al. Defining the presence of radiographic knee osteoarthritis: a comparison between the Kellgren and Lawrence system and OARSI atlas criteria. Knee Surg Sports Traumatol Arthrosc. 2014. [Epub ahead of print] doi:10.1007/s00167-014-3205-0.

  18. Felson DT, et al. Defining radiographic osteoarthritis for the whole knee. Osteoarthritis Cartilage. 1997;5(4):241–50.

    Article  CAS  PubMed  Google Scholar 

  19. Guermazi A, et al. Different thresholds for detecting osteophytes and joint space narrowing exist between the site investigators and the centralized reader in a multicenter knee osteoarthritis study–data from the Osteoarthritis Initiative. Skeletal Radiol. 2012;41(2):179–86.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Nevitt MC, et al. Longitudinal performance evaluation and validation of fixed-flexion radiography of the knee for detection of joint space loss. Arthritis Rheum. 2007;56(5):1512–20.

    Article  PubMed  Google Scholar 

  21. Duryea J, et al. Comparison of radiographic joint space width with magnetic resonance imaging cartilage morphometry: analysis of longitudinal data from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken). 2010;62(7):932–7.

    Article  Google Scholar 

  22. Reichmann WM, et al. Responsiveness to change and reliability of measurement of radiographic joint space width in osteoarthritis of the knee: a systematic review. Osteoarthritis Cartilage. 2011;19(5):550–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Mazzuca SA, et al. Varus malalignment negates the structure-modifying benefits of doxycycline in obese women with knee osteoarthritis. Osteoarthritis Cartilage. 2010;18(8):1008–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kinds MB, et al. Evaluation of separate quantitative radiographic features adds to the prediction of incident radiographic osteoarthritis in individuals with recent onset of knee pain: 5-year follow-up in the CHECK cohort. Osteoarthritis Cartilage. 2012;20(6):548–56.

    Article  CAS  PubMed  Google Scholar 

  25. Felson DT, et al. Valgus malalignment is a risk factor for lateral knee osteoarthritis incidence and progression: findings from the Multicenter Osteoarthritis Study and the Osteoarthritis Initiative. Arthritis Rheum. 2013;65(2):355–62.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Than P, et al. Geometrical values of the normal and arthritic hip and knee detected with the EOS imaging system. Int Orthop. 2012;36(6):1291–7.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Lazennec JY, et al. The EOS imaging system for understanding a patellofemoral disorder following THR. Orthop Traumatol Surg Res. 2011;97(1):98–101.

    Article  PubMed  Google Scholar 

  28. Lazennec JY, et al. Pelvis and total hip arthroplasty acetabular component orientations in sitting and standing positions: measurements reproductibility with EOS imaging system versus conventional radiographies. Orthop Traumatol Surg Res. 2011;97(4):373–80.

    Article  CAS  PubMed  Google Scholar 

  29. Woloszynski T, et al. Prediction of progression of radiographic knee osteoarthritis using tibial trabecular bone texture. Arthritis Rheum. 2012;64(3):688–95.

    Article  CAS  PubMed  Google Scholar 

  30. Hayashi D, et al. Detection of osteophytes and subchondral cysts in the knee with use of tomosynthesis. Radiology. 2012;263(1):206–15.

    Article  PubMed  Google Scholar 

  31. Peterfy CG, et al. MRI protocols for whole-organ assessment of the knee in osteoarthritis. Osteoarthritis Cartilage. 2006;14 Suppl A:A95–111.

    Article  CAS  PubMed  Google Scholar 

  32. Hayashi D, Guermazi A, Roemer FW. MRI of osteoarthritis: the challenges of definition and quantification. Semin Musculoskelet Radiol. 2012;16(5):419–30.

    Article  PubMed  Google Scholar 

  33. Hunter DJ, et al. Definition of osteoarthritis on MRI: results of a Delphi exercise. Osteoarthritis Cartilage. 2011;19(8):963–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Buckland-Wright JC, et al. Quantitative microfocal radiographic assessment of osteoarthritis of the knee from weight bearing tunnel and semiflexed standing views. J Rheumatol. 1994;21(9):1734–41.

    CAS  PubMed  Google Scholar 

  35. Gilbertson EM. Development of periarticular osteophytes in experimentally induced osteoarthritis in the dog. A study using microradiographic, microangiographic, and fluorescent bone-labelling techniques. Ann Rheum Dis. 1975;34(1):12–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Roemer FW, et al. Prevalence of magnetic resonance imaging-defined atrophic and hypertrophic phenotypes of knee osteoarthritis in a population-based cohort. Arthritis Rheum. 2012;64(2):429–37.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Roemer FW, et al. Tibiofemoral joint osteoarthritis: risk factors for MR-depicted fast cartilage loss over a 30-month period in the multicenter osteoarthritis study. Radiology. 2009;252(3):772–80.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Pottenger LA, Phillips FM, Draganich LF. The effect of marginal osteophytes on reduction of varus-valgus instability in osteoarthritic knees. Arthritis Rheum. 1990;33(6):853–8.

    Article  CAS  PubMed  Google Scholar 

  39. Castaneda S, et al. Osteoarthritis: a progressive disease with changing phenotypes. Rheumatology (Oxford). 2014;53(1):1–3.

    Article  Google Scholar 

  40. Felson DT, et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med. 2001;134(7):541–9.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y, et al. Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum. 2011;63(3):691–9.

    Article  PubMed  Google Scholar 

  42. Hunter DJ, et al. Responsiveness and reliability of MRI in knee osteoarthritis: a meta-analysis of published evidence. Osteoarthritis Cartilage. 2011;19(5):589–605.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Hunter DJ, et al. Systematic review of the concurrent and predictive validity of MRI biomarkers in OA. Osteoarthritis Cartilage. 2011;19(5):557–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Conaghan PG, et al. Summary and recommendations of the OARSI FDA osteoarthritis Assessment of Structural Change Working Group. Osteoarthritis Cartilage. 2011;19(5):606–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Meredith DS, et al. Empirical evaluation of the inter-relationship of articular elements involved in the pathoanatomy of knee osteoarthritis using magnetic resonance imaging. BMC Musculoskelet Disord. 2009;10:133.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Peterfy CG, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage. 2004;12(3):177–90.

    Article  CAS  PubMed  Google Scholar 

  47. Kornaat PR, et al. MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)–inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol. 2005;34(2):95–102.

    Article  PubMed  Google Scholar 

  48. Hunter DJ, et al. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis. 2008;67(2):206–11.

    Article  CAS  PubMed  Google Scholar 

  49. Hunter DJ, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage. 2011;19(8):990–1002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br. 1961;43-B:752–7.

    CAS  PubMed  Google Scholar 

  51. Biswal S, et al. Risk factors for progressive cartilage loss in the knee: a longitudinal magnetic resonance imaging study in forty-three patients. Arthritis Rheum. 2002;46(11):2884–92.

    Article  PubMed  Google Scholar 

  52. Fernandez-Madrid F, et al. Synovial thickening detected by MR imaging in osteoarthritis of the knee confirmed by biopsy as synovitis. Magn Reson Imaging. 1995;13(2):177–83.

    Article  CAS  PubMed  Google Scholar 

  53. Saddik D, McNally EG, Richardson M. MRI of Hoffa’s fat pad. Skeletal Radiol. 2004;33(8):433–44.

    Article  CAS  PubMed  Google Scholar 

  54. Hayashi D, et al. Imaging of synovitis in osteoarthritis: current status and outlook. Semin Arthritis Rheum. 2011;41(2):116–30.

    Article  PubMed  Google Scholar 

  55. Rhodes LA, et al. The validation of simple scoring methods for evaluating compartment-specific synovitis detected by MRI in knee osteoarthritis. Rheumatology (Oxford). 2005;44(12):1569–73.

    Article  CAS  Google Scholar 

  56. Baker K, et al. Relation of synovitis to knee pain using contrast-enhanced MRIs. Ann Rheum Dis. 2010;69(10):1779–83.

    Article  CAS  PubMed  Google Scholar 

  57. Guermazi A, et al. Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: the MOST study. Ann Rheum Dis. 2011;70(5):805–11.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Loeuille D, et al. Magnetic resonance imaging in osteoarthritis: which method best reflects synovial membrane inflammation? Correlations with clinical, macroscopic and microscopic features. Osteoarthritis Cartilage. 2009;17(9):1186–92.

    Article  CAS  PubMed  Google Scholar 

  59. Guermazi A, et al. Whole-knee synovitis semiquantitatively assessed on T1-weighted contrast-enhanced MRI is associated with radiographic tibiofemoral osteoarthritis and severe meniscal damage: the MOST Study [abstract 402]. Osteoarthritis Cartilage. 2009;17 Suppl 1:S211–2.

    Article  Google Scholar 

  60. Bergin D, et al. Atraumatic medial collateral ligament oedema in medial compartment knee osteoarthritis. Skeletal Radiol. 2002;31(1):14–8.

    Article  PubMed  Google Scholar 

  61. Crema MD, et al. The association of magnetic resonance imaging (MRI)-detected structural pathology of the knee with crepitus in a population-based cohort with knee pain: the MoDEKO study. Osteoarthritis Cartilage. 2011;19(12):1429–32.

    Article  CAS  PubMed  Google Scholar 

  62. Stein V, et al. Pattern of joint damage in persons with knee osteoarthritis and concomitant ACL tears. Rheumatol Int. 2012;32(5):1197–208.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Brem MH, et al. Longitudinal evaluation of the occurrence of MRI-detectable bone marrow edema in osteoarthritis of the knee. Acta Radiol. 2008;49(9):1031–7.

    Article  CAS  PubMed  Google Scholar 

  64. Berthiaume MJ, et al. Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann Rheum Dis. 2005;64(4):556–63.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Englund M, et al. Meniscal pathology on MRI increases the risk for both incident and enlarging subchondral bone marrow lesions of the knee: the MOST Study. Ann Rheum Dis. 2010;69(10):1796–802.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Davies-Tuck ML, et al. Total cholesterol and triglycerides are associated with the development of new bone marrow lesions in asymptomatic middle-aged women - a prospective cohort study. Arthritis Res Ther. 2009;11(6):R181.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Laberge MA, et al. Obesity increases the prevalence and severity of focal knee abnormalities diagnosed using 3T MRI in middle-aged subjects–data from the Osteoarthritis Initiative. Skeletal Radiol. 2012;41(6):633–41.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Sharma L, et al. Relationship of meniscal damage, meniscal extrusion, malalignment, and joint laxity to subsequent cartilage loss in osteoarthritic knees. Arthritis Rheum. 2008;58(6):1716–26.

    Article  PubMed  Google Scholar 

  69. Ding C, et al. Association of prevalent and incident knee cartilage defects with loss of tibial and patellar cartilage: a longitudinal study. Arthritis Rheum. 2005;52(12):3918–27.

    Article  PubMed  Google Scholar 

  70. Stefanik JJ, et al. Association between patella alta and the prevalence and worsening of structural features of patellofemoral joint osteoarthritis: the multicenter osteoarthritis study. Arthritis Care Res (Hoboken). 2010;62(9):1258–65.

    Article  CAS  Google Scholar 

  71. Roemer FW, et al. Hip Osteoarthritis MRI Scoring System (HOAMS): reliability and associations with radiographic and clinical findings. Osteoarthritis Cartilage. 2011;19(8):946–62.

    Article  CAS  PubMed  Google Scholar 

  72. Haugen IK, et al. Hand osteoarthritis and MRI: development and first validation step of the proposed Oslo Hand Osteoarthritis MRI score. Ann Rheum Dis. 2011;70(6):1033–8.

    Article  PubMed  Google Scholar 

  73. Haugen IK, et al. Associations between MRI-defined synovitis, bone marrow lesions and structural features and measures of pain and physical function in hand osteoarthritis. Ann Rheum Dis. 2012;71(6):899–904.

    Article  PubMed  Google Scholar 

  74. Pfirrmann CW, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2001;26(17):1873–8.

    Article  CAS  Google Scholar 

  75. Friedrich KM, et al. The prevalence of lumbar facet joint edema in patients with low back pain. Skeletal Radiol. 2007;36(8):755–60.

    Article  PubMed  Google Scholar 

  76. Pfirrmann CW, et al. MR image-based grading of lumbar nerve root compromise due to disk herniation: reliability study with surgical correlation. Radiology. 2004;230(2):583–8.

    Article  PubMed  Google Scholar 

  77. Griffith JF, et al. Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2007;32(24):E708–12.

    Article  Google Scholar 

  78. Thompson JP, et al. Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine (Phila Pa 1976). 1990;15(5):411–5.

    Article  CAS  Google Scholar 

  79. de Abreu MR, et al. Acromioclavicular joint osteoarthritis: comparison of findings derived from MR imaging and conventional radiography. Clin Imaging. 2005;29(4):273–7.

    Article  PubMed  Google Scholar 

  80. Schmal H, et al. Synovial cytokine expression in ankle osteoarthritis depends on age and stage. Knee Surg Sports Traumatol Arthrosc. 2015;23(5):1359–67. Epub 2013 Oct 19.

    Google Scholar 

  81. Roemer FW, et al. Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study. Ann Rheum Dis. 2011;70(10):1804–9.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Roos EM, Dahlberg L. Positive effect of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum. 2005;52:3507–14.

    Article  CAS  PubMed  Google Scholar 

  83. McAlindon TE, et al. Change in knee osteoarthritis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment with collagen hydrolysate: a pilot randomized controlled trial. Osteoarthritis Cartilage. 2011;19(4):399–405.

    Article  CAS  PubMed  Google Scholar 

  84. Souza RB, et al. The effects of acute loading on T1rho and T2 relaxation times of tibiofemoral articular cartilage. Osteoarthritis Cartilage. 2010;18(12):1557–63.

    Article  CAS  PubMed  Google Scholar 

  85. Eckstein F, et al. Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. Osteoarthritis Cartilage. 2006;14(10):974–83.

    Article  CAS  PubMed  Google Scholar 

  86. Buck RJ, et al. An efficient subset of morphological measures for articular cartilage in the healthy and diseased human knee. Magn Reson Med. 2010;63(3):680–90.

    Article  PubMed  Google Scholar 

  87. Guermazi A, et al. Osteoarthritis: a review of strengths and weaknesses of different imaging options. Rheum Dis Clin North Am. 2013;39(3):567–91.

    Article  PubMed  Google Scholar 

  88. Eckstein F, et al. Quantitative MRI measures of cartilage predict knee replacement: a case-control study from the Osteoarthritis Initiative. Ann Rheum Dis. 2013;72(5):707–14.

    Article  PubMed  Google Scholar 

  89. Kalichman L, et al. Facet joint osteoarthritis and low back pain in the community-based population. Spine (Phila Pa 1976). 2008;33(23):2560–5.

    Article  Google Scholar 

  90. Neogi T, Bowes MA, Niu J, et al. MRI-based three-dimensional bone shape of the knee predicts onset of knee osteoarthritis: data from the osteoarthritis initiative. Arthritis Rheum. 2013;65(8):2048–58.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Gregory JS, et al. Early identification of radiographic osteoarthritis of the hip using an active shape model to quantify changes in bone morphometric features: can hip shape tell us anything about the progression of osteoarthritis? Arthritis Rheum. 2007;56(11):3634–43.

    Article  PubMed  Google Scholar 

  92. Lynch JA, et al. The association of proximal femoral shape and incident radiographic hip OA in elderly women. Osteoarthritis Cartilage. 2009;17(10):1313–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Baker-LePain JC, Lane NE. Relationship between joint shape and the development of osteoarthritis. Curr Opin Rheumatol. 2010;22(5):538–43.

    Article  PubMed  Google Scholar 

  94. Etchebehere EC, et al. Orthopedic pathology of the lower extremities: scintigraphic evaluation in the thigh, knee, and leg. Semin Nucl Med. 1998;28(1):41–61.

    Article  CAS  PubMed  Google Scholar 

  95. Omoumi P, et al. CT arthrography, MR arthrography, PET, and scintigraphy in osteoarthritis. Radiol Clin North Am. 2009;47(4):595–615.

    Article  PubMed  Google Scholar 

  96. Temmerman OP, et al. In vivo measurements of blood flow and bone metabolism in osteoarthritis. Rheumatol Int. 2013;33(4):959–63.

    Article  CAS  PubMed  Google Scholar 

  97. Moon YL, Lee SH, Park SY, et al. Evolution of shoulder disorders by 2-[F-18]-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography. Clin Orthop Surg. 2010;2:167–72.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Magee D, et al. Combining variational and model-based techniques to register PET and MR images in hand osteoarthritis. Phys Med Biol. 2010;55(16):4755–69.

    Article  PubMed  Google Scholar 

  99. Keen HI, Conaghan PG. Ultrasonography in osteoarthritis. Radiol Clin North Am. 2009;47(4):581–94.

    Article  PubMed  Google Scholar 

  100. Chiang EH, et al. Ultrasonic characterization of in vitro osteoarthritic articular cartilage with validation by confocal microscopy. Ultrasound Med Biol. 1997;23(2):205–13.

    Article  CAS  PubMed  Google Scholar 

  101. Keen HI, et al. The development of a preliminary ultrasonographic scoring system for features of hand osteoarthritis. Ann Rheum Dis. 2008;67(5):651–5.

    Article  CAS  PubMed  Google Scholar 

  102. Kortekaas MC, et al. Osteophytes and joint space narrowing are independently associated with pain in finger joints in hand osteoarthritis. Ann Rheum Dis. 2011;70(10):1835–7.

    Article  PubMed  Google Scholar 

  103. Conaghan PG, et al. Clinical and ultrasonographic predictors of joint replacement for knee osteoarthritis: results from a large, 3-year, prospective EULAR study. Ann Rheum Dis. 2010;69(4):644–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Salat MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Salat, P., Salonen, D., Veljkovic, A.N. (2015). Imaging in Osteoarthritis. In: Kapoor, M., Mahomed, N. (eds) Osteoarthritis. Adis, Cham. https://doi.org/10.1007/978-3-319-19560-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19560-5_7

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-19559-9

  • Online ISBN: 978-3-319-19560-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics