Skip to main content

Crystals

  • Chapter

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

The highly ordered matter at a molecular atomic level gives origin to crystals. In the history of modern science, the proof of the crystalline (ordered) form of matter occurred simultaneously with the demonstration that X-radiation was an electromagnetic radiation. One of the most important areas of applied physics, X-ray crystallography, was started by the diffraction of X-rays in a NaCl crystal (Bragg and Bragg 1913; Max von Laue 1913). To it we owe our current knowledge on the atomic structure of materials and proteins, including the structure of the double helix of deoxyribonucleic acid (DNA) (Franklin and Gosling 1953; Watson and Crick 1953; Wilkins et al. 1953).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The smallest of the crystal volume and the volume defined by radiation coherence lengths. For the sake of textual simplification, we will refer to diffracting volume only as crystal volume.

  2. 2.

    Please, do not confuse this k index with the module k of the wavevector, which are distinguished by the used font and by the context in which they appear in the text.

  3. 3.

    The Bragg’s law is many times written as \(2d\,\sin \theta = n\lambda\) where d is the interplanar distance, \(\theta\) the incidence angle with the planes, and n = 1, 2, 3, etc. Note that different values of n are equivalent to consider different RLPs along the plane’s normal direction.

  4. 4.

    RLPs are also called nodes in order to emphatically differentiate them from any other point of the reciprocal space to which indices hkl are not integer numbers.

  5. 5.

    The number (2π)3 disappears from (4.13) because the convolution operation, “ * ”, stands for an integration in dV q , see (1.32), but becomes one in dV Q  = (2π)3dV q , which means, \((2\pi )^{3}\int \delta (2\pi {\boldsymbol q}\,' -{\boldsymbol Q}_{\mathrm{hkl}})\,W(2\pi {\boldsymbol q} - 2\pi {\boldsymbol q}\,')\,\mathrm{d}V _{q'} =\int \delta ({\boldsymbol Q}\,' -{\boldsymbol Q}_{\mathrm{hkl}})\,W({\boldsymbol Q} -{\boldsymbol Q}\,')\,\mathrm{d}V _{Q'} = W({\boldsymbol Q} -{\boldsymbol Q}_{\mathrm{hkl}})\).

  6. 6.

    See, for example, Giacovazzo (2002, Ch. 9).

  7. 7.

    Several semiconductors have cubic unit cell with zinc blend or diamond structures, such as GaAs and Si, space groups F\(\bar{4}3\) m and Fd\(\bar{\mathrm{3}}\) m, respectively. See Hahn (2006, Ch. 7.1, pp. 112–717).

  8. 8.

    See Friedel and Bijvoet pairs, e.g. Giacovazzo (2002, pp. 170 and 475).

  9. 9.

    There are experimental methods based on a dynamical theory of X-ray diffraction, which are susceptible to the value of \(\Psi _{T}\), e.g. Morelhão et al. (2011).

  10. 10.

    Temporal coherence: longitudinal coherence C L , (1.15), divided by the speed of light, e.g. \(\Delta \lambda /\lambda = 10^{-4}\) and \(\lambda = 1.54\,\text{\AA }\, \Rightarrow \, C_{L}/c = 2.6\) fs of temporal coherence.

  11. 11.

    Further details about atomic disorder parameters are available in Authier (2006, pp. 228–242).

  12. 12.

    Although (4.21) has an analytical solution, the routine debye.m allows numerical verification in one dimension.

Bibliography

  • Authier, A.:Dynamical Theory of X-Ray Diffraction, revised edn. Oxford University, Oxford (2004)

    Google Scholar 

  • Authier, A. (ed.): International Tables for Crystallography, vol. D, online edition (2006). http://onlinelibrary.wiley.com/book/10.1107/97809553602060000001/toc

  • Bragg, W.H., Bragg, W.L.: The reflexion of X-rays by crystals. Proc. R. Soc. Lond. A 88, 428–438 (1913). doi: 10.1098/rspa.1913.0040. www.nobelprize.org/nobel_prizes/physics/laureates/1915/

    Google Scholar 

  • Franklin, R.E., Gosling, R.G.: Molecular configuration in sodium thymonucleate. Nature 171, 740–741 (1953). doi:10.1038/171740a0

    Article  ADS  Google Scholar 

  • Giacovazzo, C. (ed.): Fundamentals of Crystallography, 2nd edn. Oxford University, Oxford (2002)

    Google Scholar 

  • Hahn, T. (ed.): International Tables for Crystallography, vol. A, online edition (2006). http://onlinelibrary.wiley.com/book/10.1107/97809553602060000001/toc

  • Hauptman, H.A., Karle, J.: Solution of the phase problem I. The centrosymmetric crystal. A.C.A. Monograph No.3. Polycrystal Book Service, New York (1953). http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1985/

  • Holt, M., Wu, Z., Hong, H., Zschack, P., Jemian, P., Tischler, J., Chen, H., Chiang, T.-C.: Determination of phonon dispersions from x-ray transmission scattering: the example of silicon. Phys. Rev. Lett. 83, 3317–3319 (1999)

    Article  ADS  Google Scholar 

  • Malachias, A., Freitas, R., Morelhão, S.L., Magalhães Paniago, R., Kycia, S., Medeiros-Ribeiro, G.: X-ray diffraction methods for studying strain and composition in epitaxial nanostructured systems. In: Haight, R., Ross, F.M., Hannon, J.B. (eds.) Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization, vol. 1, pp. 211–279. World Scientific, Washington, D.C. (2011). doi:10.1142/9789814322843_0006

    Chapter  Google Scholar 

  • Morelhão, S.L., Remédios, C.M.R., Freitas, R.O., dos Santos, A.O.: X-ray phase measurements as a probe of small structural changes in doped nonlinear optical crystals. J. Appl. Crystallogr. 44, 93–101 (2011)

    Article  Google Scholar 

  • Pietsch, U., Holý, V., Baumbach, T.: High-Resolution X-Ray Scattering: From Thin Films to Lateral Nanostructures, 2nd edn. Springer, New York (2004)

    Book  Google Scholar 

  • von Laue, M.: Eine quantitative prufung der theorie fur die interferenzerscheinungen bei rontgenstrahlen. Ann. Phys. 346, 989–1002 (1913). doi:10.1002/andp.19133461005. http://www.nobelprize.org/nobel_prizes/physics/laureates/1914/

    Google Scholar 

  • Vuolo, J.H.: Fundamentos da Teoria de Erros, 2a.  edn. Edgard Blucher, São Paulo (1996)

    Google Scholar 

  • Watson, J.D., Crick, F.H.C.: A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953). doi:10.1038/171737a0. www.nobelprize.org/nobel_prizes/medicine/laureates/1962/

    Google Scholar 

  • Wilkins, M.H.F., Stokes, A.R., Wilson, H.R.: Molecular structure of deoxypentose nucleic acids. Nature 171, 738–740 (1953). doi:10.1038/171738a0

    Article  ADS  Google Scholar 

  • Yi, Z., Ye, J., Kikugawa, N., Kako, T., Ouyang, S., Stuart-Williams, H., Yang, H., Cao, J., Luo, W., Li, Z., Liu, Y., Withers, R.L.: An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater. 9, 559–564 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morelhão, S.L. (2016). Crystals. In: Computer Simulation Tools for X-ray Analysis. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-19554-4_4

Download citation

Publish with us

Policies and ethics