Skip to main content

Optimal Sub-Sequence Matching for the Automatic Prediction of Surgical Tasks

  • Conference paper
Artificial Intelligence in Medicine (AIME 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9105))

Included in the following conference series:

Abstract

Surgery is one of the riskiest and most important medical acts that is performed today. The desires to improve patient outcomes, surgeon training, and also to reduce the costs of surgery, have motivated surgeons to equip their Operating Rooms with sensors that describe the surgical intervention. The richness and complexity of the data that is collected calls for new machine learning methods to support pre-, peri- and post-surgery (before, during and after).

This paper introduces a new method for the prediction of the next task that the surgeon is going to perform during the surgery (peri). Our method bases its prediction on the optimal matching of the current surgery to a set of pre-recorded surgeries.

We assess our method on a set of neurosurgeries (lumbar disc herniation removal) and show that our method outperforms the state of the art by providing a prediction (of the next task that is going to be performed by the surgeon) more than 85% of the time with a 95% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haynes, A.B., Weiser, T.G., Berry, W.R., Lipsitz, S.R., Breizat, A.H.S., Dellinger, E.P., Herbosa, T., Joseph, S., Kibatala, P.L., Lapitan, M.C.M., et al.: A surgical safety checklist to reduce morbidity and mortality in a global population. New England Journal of Medicine 360(5), 491–499 (2009)

    Article  Google Scholar 

  2. Lalys, F., Riffaud, L., Morandi, X., Jannin, P.: Automatic phases recognition in pituitary surgeries by microscope images classification. In: Navab, N., Jannin, P. (eds.) IPCAI 2010. LNCS, vol. 6135, pp. 34–44. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Lalys, F., Riffaud, L., Bouget, D., Jannin, P.: An application-dependent framework for the recognition of high-level surgical tasks in the OR. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 331–338. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Meißner, C., Meixensberger, J., Pretschner, A., Neumuth, T.: Sensor-based surgical activity recognition in unconstrained environments. Minimally Invasive Therapy & Allied Technologies, 1–8 (2014)

    Google Scholar 

  5. Lalys, F., Jannin, P.: Surgical process modelling: a review. International Journal of Computer Assisted Radiology and Surgery 8(5), 1–17 (2013)

    Google Scholar 

  6. Forestier, G., Petitjean, F., Riffaud, L., Jannin, P.: Non-linear temporal scaling of surgical processes. Artificial Intelligence in Medicine 62(3), 143–152 (2014)

    Article  Google Scholar 

  7. Liu, Z., Hauskrecht, M.: Clinical time series prediction with a hierarchical dynamical system. In: Peek, N., Marín Morales, R., Peleg, M. (eds.) AIME 2013. LNCS(LNAI), vol. 7885, pp. 227–237. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Ruda, K., Beekman, D., White, L.W., Lendvay, T.S., Kowalewski, T.M.: Surgtrak – a universal platform for quantitative surgical data capture. Journal of Medical Devices 7(3), 030923 (2013)

    Google Scholar 

  9. Ahmidi, N., Gao, Y., Béjar, B., Vedula, S.S., Khudanpur, S., Vidal, R., Hager, G.D.: String motif-based description of tool motion for detecting skill and gestures in robotic surgery. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 26–33. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Mehta, N., Haluck, R., Frecker, M., Snyder, A.: Sequence and task analysis of instrument use in common laparoscopic procedures. Surgical Endoscopy 16(2), 280–285 (2002)

    Article  Google Scholar 

  11. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing 26(1), 43–49 (1978)

    Article  MATH  Google Scholar 

  12. Forestier, G., Lalys, F., Riffaud, L., Collins, D.L., Meixensberger, J., Wassef, S.N., Neumuth, T., Goulet, B., Jannin, P.: Multi-site study of surgical practice in neurosurgery based on surgical process models. Journal of Biomedical Informatics 46(5), 822–829 (2013)

    Article  Google Scholar 

  13. Forestier, G., Lalys, F., Riffaud, L., Trelhu, B., Jannin, P.: Classification of surgical processes using Dynamic Time Warping. Journal of Biomedical Informatics 45(2), 255–264 (2012)

    Article  Google Scholar 

  14. Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)

    Article  Google Scholar 

  15. Yankov, D., Keogh, E., Medina, J., Chiu, B., Zordan, V.: Detecting time series motifs under uniform scaling. In: International Conference on Knowledge Discovery and Data Mining, pp. 844–853. ACM (2007)

    Google Scholar 

  16. Zhou, Y., Bailey, J., Ioannou, I., Wijewickrema, S., O’Leary, S., Kennedy, G.: Pattern-based real-time feedback for a temporal bone simulator. In: Symposium on Virtual Reality Software and Technology, pp. 7–16. ACM (2013)

    Google Scholar 

  17. Petitjean, F., Forestier, G., Webb, G., Nicholson, A., Chen, Y., Keogh, E.: Dynamic Time Warping averaging of time series allows faster and more accurate classification. In: IEEE International Conference on Data Mining (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germain Forestier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Forestier, G., Petitjean, F., Riffaud, L., Jannin, P. (2015). Optimal Sub-Sequence Matching for the Automatic Prediction of Surgical Tasks. In: Holmes, J., Bellazzi, R., Sacchi, L., Peek, N. (eds) Artificial Intelligence in Medicine. AIME 2015. Lecture Notes in Computer Science(), vol 9105. Springer, Cham. https://doi.org/10.1007/978-3-319-19551-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19551-3_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19550-6

  • Online ISBN: 978-3-319-19551-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics