Advertisement

Storing and Processing Massive Trajectory Data on SAP HANA

  • Haozhou WangEmail author
  • Kai Zheng
  • Hoyoung Jeung
  • Shane Bracher
  • Asadul Islam
  • Wasim Sadiq
  • Shazia Sadiq
  • Xiaofang Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9093)

Abstract

Owing to the development of cheap RAM-based storage technology, modern computing hardware can afford much larger main memory. Consequently, traditional database systems can be re-designed to store and manage all the data in main memory permanently. Such kind of in-memory database systems (IMDB) have attracted increasing attention from both academia and industry due to its outstanding performance in processing large amount of data. In this work, we will exploit the computational power of SAP HANA, the in-memory column-oriented data analytics platform designed by SAP, to support efficient query processing for moving object trajectories. We have tailored the frame-based data structure designed by our previous SharkDB project and made the trajectory data with variable lengths and sampling rates suitable for relational database model in SAP HANA. Extensive experiments based on large-scale real dataset have demonstrated superior performance of our frame-based design in processing a variant of queries.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, H., Zheng, K., Xu, J., Zheng, B., Zhou, X., Sadiq, S.: SharkDB: an in-memory column-oriented trajectory storage. In: CIKM, pp. 1409–1418 (2014)Google Scholar
  2. 2.
    Plattner, H.: A common database approach for OLTP and OLAP using an in-memory column database. In: SIGMOD, pp. 1–2 (2009)Google Scholar
  3. 3.
    Plattner, H.: SanssouciDb: an in-memory database for processing enterprise workloads. In: BTW, vol. 20, pp. 2–21 (2011)Google Scholar
  4. 4.
    Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden, S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N., Zdonik, S.: C-store: a column-oriented DBMS. In: VLDB, pp. 553–564 (2005)Google Scholar
  5. 5.
    Héman, S., Zukowski, M., Nes, N.J., Sidirourgos, L., Boncz, P.: Positional update handling in column stores. In: SIGMOD, pp. 543–554 (2010)Google Scholar
  6. 6.
    Lemke, C., Sattler, K.-U., Faerber, F., Zeier, A.: Speeding up queries in column stores. In: Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DAWAK 2010. LNCS, vol. 6263, pp. 117–129. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  7. 7.
    Gawlick, D., Kinkade, D.: Varieties of concurrency control in IMS/VS fast path. DEB 8(2), 3–10 (1985)Google Scholar
  8. 8.
    Ammann, A.C., Hanrahan, M., Krishnamurthy, R.: Design of a memory resident DBMS. In: COMPCON, pp. 54–58 (1985)Google Scholar
  9. 9.
    Bitton, D., Hanrahan, M., Turbyfill, C.: Performance of complex queries in main memory database systems. In: ICDE, pp. 72–81 (1987)Google Scholar
  10. 10.
    Baulier, J., Bohannon, P., Gogate, S., Gupta, C., Haldar, S.: DataBlitz storage manager: main-memory database performance for critical applications. In: SIGMOD, pp. 519–520 (1999)Google Scholar
  11. 11.
    Binnig, C., Hildenbrand, S., Färber, F.: Dictionary-based order-preserving string compression for main memory column stores. In: SIGMOD, pp. 283–296 (2009)Google Scholar
  12. 12.
    Rao, J., Ross, K.A.: Making B+- trees cache conscious in main memory. In: SIGMOD, pp. 475–486 (2000)Google Scholar
  13. 13.
    Manegold, S., Boncz, P., Kersten, M.L.: Generic database cost models for hierarchical memory systems. In: PVLDB, pp. 191–202 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Haozhou Wang
    • 1
    Email author
  • Kai Zheng
    • 1
  • Hoyoung Jeung
    • 2
  • Shane Bracher
    • 2
  • Asadul Islam
    • 2
  • Wasim Sadiq
    • 2
  • Shazia Sadiq
    • 1
  • Xiaofang Zhou
    • 1
  1. 1.The University of QueenslandBrisbaneAustralia
  2. 2.SAP Innovation CenterBrisbaneAustralia

Personalised recommendations