Ontology Augmentation via Attribute Extraction from Multiple Types of Sources

  • Xiu Susie FangEmail author
  • Xianzhi Wang
  • Quan Z. Sheng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9093)


A comprehensive ontology can ease the discovery, maintenance and popularization of knowledge in many domains. As a means to enhance existing ontologies, attribute extraction has attracted tremendous research attentions. However, most existing attribute extraction techniques focus on exploring a single type of sources, such as structured (e.g., relational databases), semi-structured (e.g., Extensible Markup Language (XML)) or unstructured sources (e.g., Web texts, images), which leads to the poor coverage of knowledge bases (KBs). This paper presents a framework for ontology augmentation by extracting attributes from four types of sources, namely existing knowledge bases (KBs), query stream, Web texts, and Document Object Model (DOM) trees. In particular, we use query stream and two major KBs, DBpedia and Freebase, to seed the attribute extraction from Web texts and DOM trees. We specially focus on exploring the extraction technique from DOM trees, which is rarely studied in previous works. Algorithms and a series of filters are developed. Experiments show the capability of our approach in augmenting existing KB ontology.


Knowledge base Information extraction Dom tree Web data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adelberg, B.: NoDoSE - A Tool for Semi-automatically Extracting Structured and Semistructured Data from Text Documents. ACM SIGMOD Record 27(2), 283–294 (1998)CrossRefGoogle Scholar
  2. 2.
    Arasu, A., Garcia-Molina, H.: Extracting structured data from web pages. In: Proceedings of ACM SIGMOD Conference (SIGMOD 2003), New York, USA (2003)Google Scholar
  3. 3.
    Bing, L., Lam, W., Gu, Y.: Towards a unified solution: data record region detection and segmentation. In: Proceedings of the 20th ACM Intl. Conf. on Information and Knowledge Management (CIKM 2011), New York, NY, USA (2011)Google Scholar
  4. 4.
    Crescenzi, V., Mecca, G., Merialdo, P.: RoadRunner: automatic data extraction from data-intensive web sites. In: Proceedings of the 2002 ACM SIGMOD Conference (SIGMOD 2002), New York, NY, USA (2002)Google Scholar
  5. 5.
    Grishman, R.: Information extraction: capabilities and challenges. In: Notes for the 2012 International Winter School in Language and Speech Technologies. Rovira i Virgili University, Tarragona (2012)Google Scholar
  6. 6.
    Gupta, R., Halevy, A., Wang, X., Whang, S., Wu, F.: Biperpedia: An Ontology for Search Applications. The VLDB Endowment (PVLDB) 7(7), 505–516 (2014)CrossRefGoogle Scholar
  7. 7.
    Haghighi, A., Klein, D.: Simple coreference resolution with rich syntactic and semantic features. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing (EMNLP 2009), Singapore (2009)Google Scholar
  8. 8.
    Irmak, U., Suel, T.: Interactive wrapper generation with minimal user effort. In: Proceedings of the 15th International Conference on World Wide Web (WWW 2006), New York, NY, USA (2006)Google Scholar
  9. 9.
    Kopliku, A., Boughanem, M., Pinel-Sauvagnat, K.: Towards a framework for attribute retrieval. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management (CIKM 2011), New York, NY, USA (2011)Google Scholar
  10. 10.
    Kristjansson, T., Culotta, A., Viola, P., McCallum, A.: Interactive information extraction with constrained conditional random fields. In: Proceedings of the 19th National Conf. on Artifical Intelligence (AAAI 2004), San Jose, California (2004)Google Scholar
  11. 11.
    Lee, T., Wang, Z., Wang, H., won Hwang, S.: Attribute extraction and scoring: a probabilistic approach. In: Proceedings of 29th International Conference on Data Engineering (ICDE 2013), Brisbane, Australia (2013)Google Scholar
  12. 12.
    Liu, B., Grossman, R., Zhai, Y.: Mining data records in web pages. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2003), New York, NY, USA (2003)Google Scholar
  13. 13.
    Liu, L., Pu, C., Han, W.: XWRAP: an XML-enabled wrapper construction system for web information sources. In: Proceedings of the 16th International Conference on Data Engineering (ICDE 2000), San Diego, California, USA (2000)Google Scholar
  14. 14.
    Paşca, M., Alfonseca, E., Robledo-Arnuncio, E., Martin-Brualla, R., Hall, K.: The role of query sessions in extracting instance attributes from web search queries. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 62–74. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  15. 15.
    Pasca, M., Durme, B.V.: What you seek is what you get: extraction of class attributes from query logs. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), Hyderabad, India (2007)Google Scholar
  16. 16.
    Turmo, J., Ageno, A., Català, N.: Adaptive Information Extraction. ACM Computing Surveys (CSUR) 38(2), 4-es (2006)CrossRefGoogle Scholar
  17. 17.
    Zhu, J., Nie, Z., Wen, J.R., Zhang, B., Ma, W.Y.: Simultaneous record detection and attribute labeling in web data extraction. In: Proceedings of the 12th ACM SIGKDD Conference (KDD 2006), New York, NY, USA (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Computer ScienceThe University of AdelaideAdelaideAustralia

Personalised recommendations