Advertisement

Community Based Information Dissemination

  • Zhengwei Yang
  • Ada Wai-Chee FuEmail author
  • Yanyan Xu
  • Silu Huang
  • Ho Fung Leung
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9093)

Abstract

Given a social network, we study the problem of finding \(k\) seeds that maximize the dissemination of information. Based on the principle of homophily, communities play an important role since information can be disseminated to communities via the seeds. We introduce a new mechanism for detecting communities satisfying the pertinent criteria for communities and information dissemination. We demonstrate the effectiveness of our approach by an application of the results for influence maximization.

Keywords

Information dissemination Community detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique detection. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  3. 3.
    Bomze, I., Budinich, M., Pardalos, P., Pelilo, M.: The maximum clique problem. Handbook of Combinatorial Optimization A, pp. 1–74 (1999)Google Scholar
  4. 4.
    Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: 16th SIGKDD, pp. 1029–1038 (2010)Google Scholar
  5. 5.
    Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: 15th SIGKDD, pp. 199–208. ACM (2009)Google Scholar
  6. 6.
    Coscia, M., Giannoti, F., Pedreschi, D.: A classification for community discovery methods in complex networks. Journal of Statistical Analysis and Data Mining 47(11), 41–45 (1997)Google Scholar
  7. 7.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: 7th SIGKDD (2001)Google Scholar
  8. 8.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: SIGCOMM (1999)Google Scholar
  9. 9.
    Fortunato, S.: Community detection in graphs. Physical Reports 486, 75–174 (2010)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Goyal, A., f. Bonchi, Lakshmanan, L.: A data-based approach to social influence maximization. In: VLDB (2011)Google Scholar
  11. 11.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Ninth SIGKDD, pp. 137–146. ACM (2003)Google Scholar
  12. 12.
    Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Transactions on the Web 1(1), 1–39 (2007)CrossRefGoogle Scholar
  13. 13.
    Mathioudakis, M., Bonchi, F., Castillo, C., Gionis, A., Ukkonen, A.: Sparsification of influence networks. In: 17th SIGKDD, pp. 529–537. ACM (2011)Google Scholar
  14. 14.
    Michael, J.: Labor dispute reconciliation in a forest products manufacturing facility. Forest Products Journal 47(11), 41–45 (1997)Google Scholar
  15. 15.
    Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of the approximations for maximizing submodular set functions. Mathematical Programming 14, 265–294 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    de Nooy, W., Mrvar, A., Batagelj, V.: Exploratory Social Network Analysis with Pajek. Cambridge University Press, Cambridge, UK (2005)CrossRefGoogle Scholar
  17. 17.
    Pattillo, J., Veremyev, A., Butenko, S., Boginski, V.: On the maximum quasi-clique problem. Discrete Applied Mathematics 161(1), 244–257 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Pullan, W., Franco, M., Mauro, B.: Cooperating local search for the maximum clique problem. J. Heuristics 17, 181–199 (2011)CrossRefGoogle Scholar
  19. 19.
    Pullan, W., Hoos, H.H.: Dynamic local search for the maximum clique problem. Journal of Artificial Intelligence Research 25, 159–185 (2006)zbMATHGoogle Scholar
  20. 20.
    Raghavan, U., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Physical Review E 76 (2007)Google Scholar
  21. 21.
    Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: KDD (2002)Google Scholar
  22. 22.
    Sozio, M., Gionis, A.: The community-search problem and how to plan a successful cocktail party. In: 16th SIGKDD, pp. 939–948. ACM (2010)Google Scholar
  23. 23.
    Yang, Z., Fu, A., Xu, Y., Huang, S., Leung, H.: Community based information dissemination. Technical Report, CSE, CUHK (2015). http://www.cse.cuhk.edu.hk/~adafu/paper/cbid.pdf

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Zhengwei Yang
    • 1
  • Ada Wai-Chee Fu
    • 1
    Email author
  • Yanyan Xu
    • 1
  • Silu Huang
    • 2
  • Ho Fung Leung
    • 1
  1. 1.Chinese University of Hong KongHong KongChina
  2. 2.University of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations