Advertisement

Efficient Discovery of Differential Dependencies Through Association Rules Mining

  • Selasi KwashieEmail author
  • Jixue Liu
  • Jiuyong Li
  • Feiyue Ye
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9093)

Abstract

Differential dependencies (DDs) extend functional dependencies (FDs) to capture the semantics of distance among data values. To mine DDs in a given relation is, thus, more challenging as the more general definition of DDs creates: a combinatorial large search space; and hugely sized minimal cover sets of DDs. This paper proposes a simple, yet effective and efficient approach to mine DDs in a given relation. We study and present a link between DDs and association rules (ARs): paving way for the adoption of existing ARs mining algorithms in the discovery of DDs. Furthermore, we propose a measure of interestingness for DDs to aid the discovery of essential DDs and avoid mining an extremely large set. Finally, we show the efficiency and scalability of our solution through experiments on three real-world benchmark data sets. The results indicate that our discovery approach is efficient and scalable.

Keywords

Association Rule Distance Relation Minimum Support Association Rule Mining Minimal Cover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Imieliski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. SIGMOD Rec. 22(2), 207–216 (1993)CrossRefGoogle Scholar
  2. 2.
    Borgelt, C., Kruse, R.: Induction of association rules: apriori implementation. In: 15th Conference on Computational Statistics, pp. 395–400 (2002)Google Scholar
  3. 3.
    Chakravarthy, U.S., Grant, J., Minker, J.: Logic-based Approach to Semantic Query Optimization. ACM Trans. Database Syst. 15(2), 162–207 (1990)CrossRefGoogle Scholar
  4. 4.
    Fan, W., Geerts, F., Li, J., Xiong, M.: Discovering Conditional Functional Dependencies. IEEE Trans. Knowl. Data Eng. 23(5), 683–698 (2011)CrossRefGoogle Scholar
  5. 5.
    Fan, W., Jia, X., Li, J., Ma, S.: Reasoning about Record Matching Rules. PVLDB 2(1), 407–418 (2009)Google Scholar
  6. 6.
    Golab, L., Karloff, H., Korn, F., Srivastava, D., Yu, B.: On Generating Near-optimal Tableaux for Conditional Functional Dependencies. Proc. VLDB Endow. 1(1), 376–390 (2008)CrossRefGoogle Scholar
  7. 7.
    Huhtala, Y., Krkkinen, J., Porkka, P., Toivonen, H.: Tane: An Efficient Algorithm for Discovering Functional and Approximate Dependencies. The Computer Journal 42(2), 100–111 (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Koudas, N., Saha, A., Srivastava, D., Venkatasubramanian, S.: Metric functional dependencies. In: 25th International Conference on Data Engineering, pp. 1275–1278. IEEE Computer Society (2009)Google Scholar
  9. 9.
    Kwashie, S., Liu, J., Li, J., Ye, F.: Mining differential dependencies: a subspace clustering approach. In: Wang, H., Sharaf, M.A. (eds.) ADC 2014. LNCS, vol. 8506, pp. 50–61. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  10. 10.
    Li, J.: On optimal Rule Discovery. IEEE Trans. on Knowledge and Data Engineering 18(4), 460–471 (2006)CrossRefGoogle Scholar
  11. 11.
    Li, J., Liu, J., Toivonen, H., Yong, J.: Effective Pruning for the Discovery of Conditional Functional Dependencies. Computer Journal 56(3), 378–392 (2013)CrossRefzbMATHGoogle Scholar
  12. 12.
    Liu, J., Ye, F., Li, J., Wang, J.: On Discovery of Functional Dependencies from Data. Data & Knowledge Engineering 86, 146–159 (2013)CrossRefGoogle Scholar
  13. 13.
    Novelli, N., Cicchetti, R.: FUN: an efficient algorithm for mining functional and embedded dependencies. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 189–203. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  14. 14.
    Song, S., Chen, L.: Discovering matching dependencies. In: 18th ACM Conference on Information and Knowledge Management, pp. 1421–1424 (2009)Google Scholar
  15. 15.
    Song, S., Chen, L.: Differential Dependencies: Reasoning and Discovery. ACM Trans. Database Syst. 36(3), 16:1–16:41 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Selasi Kwashie
    • 1
    Email author
  • Jixue Liu
    • 1
  • Jiuyong Li
    • 1
  • Feiyue Ye
    • 2
  1. 1.ITMSUniversity of South AustraliaAdelaideAustralia
  2. 2.CSEJiangsu University of TechnologyChangzhouChina

Personalised recommendations