Skip to main content

A Proposal for Extending Formal Concept Analysis to Knowledge Graphs

  • Conference paper
  • First Online:
Formal Concept Analysis (ICFCA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9113))

Included in the following conference series:

Abstract

Knowledge graphs offer a versatile knowledge representation, and have been studied under different forms, such as conceptual graphs or Datalog databases. With the rise of the Semantic Web, more and more data are available as knowledge graphs. FCA has been successful for analyzing, mining, learning, and exploring tabular data, and our aim is to help transpose those results to graph-based data. Previous FCA approaches have already addressed relational data, hence graphs, but with various limits. We propose G-FCA as an extension of FCA where the formal context is a knowledge graph based on n-ary relationships. The main contributions is the introduction of “n-ary concepts”, i.e. concepts whose extents are n-ary relations of objects. Their intents, “projected graph patterns”, mix relationships of different arities, objects, and variables. In this paper, we lay first theoretical results, in particular the existence of a concept lattice for each concept arity, and the role of relational projections to connect those different lattices.

This research is supported by ANR project IDFRAud (ANR-14-CE28-0012-02).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Similarly to Prolog where predicates are identified by their name and arity.

References

  1. Allard, P., Ferré, S., Ridoux, O.: Discovering functional dependencies and association rules by navigating in a lattice of OLAP views. In: Kryszkiewicz, M., Obiedkov, S. (eds.) Concept Lattices and Their Applications, pp. 199–210. CEUR-WS, Sevilla (2010)

    Google Scholar 

  2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  3. Baader, F., Distel, F.: A finite basis for the set of EL-implications holding in a finite model. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 46–61. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989)

    Article  Google Scholar 

  5. Chein, M., Mugnier, M.L.: Graph-Based Knowledge Representation: Computational Foundations of Conceptual Graphs. AIKP. Springer, London (2008)

    Google Scholar 

  6. Ferré, S.: Conceptual navigation in RDF graphs with SPARQL-like queries. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA 2010. LNCS, vol. 5986, pp. 193–208. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Ferré, S., Ridoux, O.: A logical generalizationof formal concept analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 371–384. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Ferré, S., Ridoux, O.: The use of associative concepts in the incremental building of a logical context. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, p. 299. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, p. 129. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Ganter, B., Wille, R.: Formal Concept Analysis – Mathematical Foundations. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  11. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman & Hall/CRC, London (2009)

    Google Scholar 

  12. Kötters, J.: Concept lattices of a relational structure. In: Pfeiffer, H.D., Ignatov, D.I., Poelmans, J., Gadiraju, N. (eds.) ICCS 2013. LNCS, vol. 7735, pp. 301–310. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Kuznetsov, S.O., Samokhin, M.V.: Learning closed sets of labeled graphs for chemical applications. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 190–208. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Kuznetsov, S.O.: Fitting pattern structures to knowledge discovery in big data. In: Cellier, P., Distel, F., Ganter, B. (eds.) ICFCA 2013. LNCS, vol. 7880, pp. 254–266. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Muggleton, S., Raedt, L.D.: Inductive logic programming: theory and methods. J. Logic Program. 19(20), 629–679 (1994)

    Article  Google Scholar 

  16. Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis: mining concept lattices from multi-relational data. Annals Math. Artif. Intell. 67(1), 81–108 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 245–260. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  18. Wille, R.: Conceptual graphs and formal concept analysis. In: Lukose, D., Delugach, H., Keeler, M., Searle, L., Sowa, J. (eds.) Conceptual Structures: Fulfilling Peirce’s Dream. LNCS (LNAI), vol. 1257, pp. 290–303. Springer, Springer (1997)

    Chapter  Google Scholar 

  19. Yan, X., Han, J.: Closegraph: mining closed frequent graph patterns. In: ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD). pp. 286–295. ACM (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Ferré .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ferré, S. (2015). A Proposal for Extending Formal Concept Analysis to Knowledge Graphs. In: Baixeries, J., Sacarea, C., Ojeda-Aciego, M. (eds) Formal Concept Analysis. ICFCA 2015. Lecture Notes in Computer Science(), vol 9113. Springer, Cham. https://doi.org/10.1007/978-3-319-19545-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19545-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19544-5

  • Online ISBN: 978-3-319-19545-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics