Skip to main content

Stiffness and Strength Analysis of Upholstered Furniture

  • Chapter
  • First Online:
Furniture Design
  • 3666 Accesses

Abstract

Upholstery frames belong to 3D structures, i.e. to constructions created from stiffly connected rods (elements), the axes of which make up curved or polygonal lines not lying in one plane, or 2D frames, but loaded with forces not lying in the system plane (Fig. 8.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akimoto M, Oka T, Oki K, Hyakusoku H (2007) Finite element analysis of effect of softness of cushion pads on stress concentration due to an oblique load on pressure sores. J Nippon Med Sch 74(3):230–235

    Article  Google Scholar 

  • Anonim (2000a) ABAQUS Theory Manual, 6th edn. Hibbitt, Karlsson & Sorensen, Inc. USA

    Google Scholar 

  • Anonim (2000b) ABAQUS User’s Manual, 6th edn. Hibbitt, Karlsson & Sorensen, Inc. USA

    Google Scholar 

  • Arcan M (1990) Non-invasive and sensor techniques in contact mechanics: a revolution in progress. In: Proceedings of the ninth international conference on experimental mechanics, vol 1. Copenhagen, p 1–18

    Google Scholar 

  • Ashman R, Rho Y (1988) Elastic modulus of trabecular bone material. J Biomech 21(3):177–181

    Article  Google Scholar 

  • Brosh T, Arcan M (1994) Toward early detection of the tendency to stress fractures. Clin Biomech 9:111–116

    Article  Google Scholar 

  • Brosh T, Arcan M (2000) Modeling the body/chair interaction—an integrative experimental—numerical approach. Clin Biomech 15:217–219

    Article  Google Scholar 

  • Będziński R (1997) Biomechanika inżynierska. Zagadnienia wybrane. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław

    Google Scholar 

  • Candadai RS, Reddi NP (1992) Stress distribution in a physical buttock model: effect of simulated bone geometry. J Biomech 25(12):1403–1411

    Article  Google Scholar 

  • Chabanas M, Luboz V, Payan J (2002) Patient specific finite element model of the face soft tissues for computer—assisted maxillofacial surgery. Med Image Anal 7:131–151

    Article  Google Scholar 

  • Chow WW, Odell EI (1994) Deformations and stress in soft body tissues of sitting person. J Biomech Eng 100:79–87

    Article  Google Scholar 

  • Czysz HJ (1986) Experimentale Untersuchungen an Polyurethan-Iintegralweichschaum zur Bestimmung von Kennwerten zu Berechnungsgrundladen. Ph.D dissertation, Universitat der Bundeswehr Hamburg

    Google Scholar 

  • Deuflhard P (2003) Biomechanical modeling of soft tissue and facial expressions for craniofacial surgery planning. Freien Universitat, Berlin, pp 60–63

    Google Scholar 

  • DIN EN ISO 3386-1:2010-09 Polymeric materials, cellular flexible—Determination of stress-strain characteristics in compression—Part 1: Low-density materials

    Google Scholar 

  • Douglas T (2000) Empirical relationships between acoustic parameters in human soft tissues. Acoust Res Lett Online 1(2):37–42

    Article  Google Scholar 

  • Enderle J, Blanchard S, Bronzino J (2000) Introduction to biomedical engineering. CA Academic, San Diego, pp 46–72

    Google Scholar 

  • Fung Y (1993) Mechanical properties of living tissues. Springer Verlag, New York, pp 321–391

    Google Scholar 

  • Gedliczka A (2001) Atlas miar człowieka. Dane do projektowania i oceny ergonomicznej. Centralny Instytut Ochrony Pracy, Warsaw

    Google Scholar 

  • Gefen A, Chen J, Elad D (1999) Stresses in the normal and diabetic human penis following implantation of an inflatable prosthesis. Med Biol Eng Comput 37:625–631

    Article  Google Scholar 

  • Gefen A, Gefen N, Linder-Ganz E (2005) In vivo muscle stiffening under bone compression promotes deep pressure sores. J Biomech Eng 127:512–524

    Article  Google Scholar 

  • Gerard JM (2004) Indentation for estimating the human tongue soft tissues constitutive law: application to a 3d biomechanical model. In: Cotin S, Metaxas D (eds) ISMS 2004, LNCS 3078. Springer, Berlin Heidelberg, pp 77–83

    Google Scholar 

  • Ghadiali S (2004) Finite element analysis of active eustachian tube function. J Appl Physiol 97:648–654

    Article  Google Scholar 

  • Golombeck M (1999) Magnetic resonance imaging with implanted neurostimulators: a first numerical approach using finite integration theory. Physical properties of human tissue. University of Karlsruhe, Germany

    Google Scholar 

  • Guo X (2001) Mechanical properties of cortical bone and cancellous bone tissue. In: Cowin SC (ed) Bone mechanics handbook. CRC, Boca Raton, FL, pp 10–23

    Google Scholar 

  • Guzik P (2001) Ocena adaptacji układu krążenia do zmiany kąta pochylenia w przebiegu próby pionizacji. Ph.D dissertation, Medical University, Poznań

    Google Scholar 

  • Hazelwood S (1998) An adaptation simulation to predict bone remodeling around implant stems following hip replacement surgery. In: North American Congress on Biomechanics, Universty of Waterlo, Waterlo, Ontario, Canada, August 1998, p 14–18

    Google Scholar 

  • Hill R (1978) Aspects of invariance in solid mechanics. Adv Appl Mech 18:1–75

    Article  Google Scholar 

  • Honma T, Takahashi M (2001) Stress analysis on the sacral model for pressure ulcers. Jpn J Press Ulcers 3:20–26

    Google Scholar 

  • Hu T, Desai JP (2005) Characterization of soft-tissue material properties: large deformation analysis. In: Program for robotics, Intelligent Sensing, and Mechatronics (PRISM) Laboratory 3141 Chestnut Street, MEM Department, Room 2–115, Drexel University, Philadelphia, PA 19104

    Google Scholar 

  • ISO 8307:2007 Determination of resilience by ball rebound

    Google Scholar 

  • Kamińska J (2001) Opracowanie metody oceny obciążenia systemu mięśniowego pleców i kręgosłupa przy pracach siedzących w funkcji rodzaju siedziska. Centralny Instytut Ochrony Pracy Państwowy Instytut Badawczy, Warsaw

    Google Scholar 

  • Krutul R (2004) Odleżyna, profilaktyka i terapia. Revita

    Google Scholar 

  • Lees C, Vincent J, Hillerton J (1991) Poisson’s ratio in skin. Biomed Mater Eng 1(1):19–23

    Google Scholar 

  • Linder-Ganz E, Gefen A (2004) Mechanical compression—induced pressure sores in rat hindlimb: muscle stiffness, histology and comptational models. J Appl Physiol 96:2034–2049

    Article  Google Scholar 

  • Linder-Ganz E, Yarnitzky G, Portnoy S, Yizhar Z, Gefen A (2005) Real-time finite element monitoring of internal stresses in the buttock during wheelchair sitting to prevent pressure sores: verification and phantom results. In: Rodrigues H et al (ed) II International Conference on Omputational Bioengineering. Lisbon, Portugal, September 14–16

    Google Scholar 

  • Mangurian L, Donaldson R (1990) Development of peroxisomal betaoxidation activities in brown fat of perinatal rabbits. Bid Neonate 57:349–357

    Article  Google Scholar 

  • Mills NJ, Gilchrist A (2000) Modeling the indentation of low density polymer foams. Cell Polym 19:389–412

    Google Scholar 

  • Morcovescu V, Dragulescu D (2002) Reconstruction of the human femur based on the ct slices to perform the finite element analysis. Buletinul Stiintific Al Universitatii Politehnica Din Timisoara, Seria Mecanica 47(61):55–62

    Google Scholar 

  • Ogden RW (1972) Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubber like solids. Proceedings of the Royal Society of London, Series A. 326:565–584

    Google Scholar 

  • Patil K, Braak L, Huson A (1996) Analysis of stresses in two—dimensional models of normal and neuropathic feet. Med Bid Eng Comput 34:280–284

    Article  Google Scholar 

  • PN-77/C-05012.03 Methods of testing flexible porous materials—determining apparent density

    Google Scholar 

  • PN-77/C-05012.10 Methods of testing flexible porous materials—determining permanent deformation

    Google Scholar 

  • Prior B (2001) Muscularity and the density of the fat—free mass in athletes. J Appl Physiol 90:1523–1531

    Google Scholar 

  • Qunli S (2005) Finite element modeling of human buttock—thigh tissue in a seated posture. In: Summer Bioengineering conference, Vail Cascade Resort & Spa, Vail, Colorado, 22–26 June 2005

    Google Scholar 

  • Reddy NP, Patel H, Cochran GVB, Brunski JB (1982) Model experiments to study the stress distribution in a seated buttocks. J Biomech 15(7):493–504

    Article  Google Scholar 

  • Renz R (1977) Zum zugigen und zyklischen Verformungsverhalten polimerer Hartschaumstoffe. Ph.D dissertation, TH Karlsruhe

    Google Scholar 

  • Renz R (1978) Modellvorstellungen zur Berechnung des mechanisches Verhaltens von Hartschaumstoffen. In: Schaumkunstoffe, Fachferband Schaumkunstoffe e.V. Dusseldorf

    Google Scholar 

  • Rho Y, Ashman R, Turner C (1993) Young’s modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements. J Biomech 26(2):111–119

    Article  Google Scholar 

  • Schneck D (1995) An outline of cardiovascular structure and function. In: Bronzino J (ed) The biomechanical engineering handbook, vol 3. CRC/IEEE, Boca Raton FL 3

    Google Scholar 

  • Schrodt M et al (2005) Hyperelastic description of polymer soft foams at finite deformations. Tech Mech 25:163–173

    Google Scholar 

  • Smardzewski J, Grbac I, Prekrat S (2007) Nonlinear elastic of hyper elastic furniture foams. In: 18th Medunarodno Zanstveno Svjetovanje Ambienta’07, University of Zabreb, p 77–84

    Google Scholar 

  • Smardzewski J, Kabała A, Matwiej Ł, Wiaderek K, Idzikowska W, Papież D (2008) Antropotechniczne projektowanie mebli do leżenia i siedzenia. In: Raport końcowy projektu badawczego MNiSzW nr 2 PO6L 013 30, umowa nr 0998/P01/2006/30

    Google Scholar 

  • Srinivasan S (1999) 3-D global/local analysis of composite hip prostheses—a model for multiscale structural analysis. Compos Struct 45:163–170

    Article  Google Scholar 

  • Storakers B (1986) On material representation and constitutive branching in finite compressible elasticity. J Mech Phy Solids 34(2):125–145

    Article  Google Scholar 

  • Taylor M (1999) A combined finite element method and continuum damage mechanics approach to simulate the in vitro fatigue behavior of human cortical bone. J Mater Sci—Mater Med 10:841–846

    Article  Google Scholar 

  • Todd BA, Thacker JG (1994) Three-dimensional computer model of the human buttocks, in vivo. J Rehabil Res Dev 31:111–119

    Google Scholar 

  • Wang Y, Lakes R (2002) Analytical parametric analysis of the contact problem of human buttocks and negative Poisson’s ratio foam cushions. Int J Solids Struct 39:4825–4838

    Article  Google Scholar 

  • William M (1993) Modelling the mechanics of narrowly contained soft tissues: the effects of specification of Poisson’s ratio. J Rehabil Res Dev 30(2):205–209

    Google Scholar 

  • Zielnica J (1996) Wytrzymałość materiałów. Wydawnictwo Politechniki Poznańskiej, Poznań

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Smardzewski .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Smardzewski, J. (2015). Stiffness and Strength Analysis of Upholstered Furniture. In: Furniture Design. Springer, Cham. https://doi.org/10.1007/978-3-319-19533-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19533-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19532-2

  • Online ISBN: 978-3-319-19533-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics