Skip to main content

Mechanisms of Bone Remodelling in Psoriatic Arthritis

  • Chapter
  • First Online:
Psoriatic Arthritis and Psoriasis

Abstract

Psoriatic arthritis (PsA) is characterized by chronic inflammatory arthritis associated with skin and/or nail changes of psoriasis. PsA manifests in the peripheral joints with both bone destruction and new bone formation while in the spine there is aberrant bone formation and vertebral fusion. The pathogenic basis for the co-existence of bone loss and paradoxical bone formation has not been explained. Several exciting discoveries in this area has improved our understanding of bone homeostatic abnormalities in PsA and these will be explored in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacobson JA, Girish G, Jiang Y, Resnick D. Radiographic evaluation of arthritis: inflammatory conditions. Radiology. 2008;248:378–89.

    Article  PubMed  Google Scholar 

  2. Kane D, Stafford L, Bresnihan B, FitzGerald O. A prospective, clinical and radiological study of early psoriatic arthritis: an early synovitis clinic experience. Rheumatology. 2003;42:1460–8.

    Article  PubMed  CAS  Google Scholar 

  3. Finzel S, Kraus S, Schmidt S, et al. Bone anabolic changes progress in psoriatic arthritis patients despite treatment with methotrexate or tumour necrosis factor inhibitors. Ann Rheum Dis. 2013;72:1176–81.

    Article  PubMed  CAS  Google Scholar 

  4. Lowes MA, Kikuchi T, Fuentes-Duculan J, et al. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol. 2008;128:1207–11.

    Article  PubMed  CAS  Google Scholar 

  5. Li N, Yamasaki K, Saito R, et al. Alarmin function of cathelicidin antimicrobial peptide LL37 through IL-36gamma induction in human epidermal keratinocytes. J Immunol. 2014;193:5140–8.

    Article  PubMed  CAS  Google Scholar 

  6. Tan AL, Benjamin M, Toumi H, et al. The relationship between the extensor tendon enthesis and the nail in distal interphalangeal joint disease in psoriatic arthritis–a high-resolution MRI and histological study. Rheumatology. 2007;46:253–6.

    Article  PubMed  CAS  Google Scholar 

  7. Riol-Blanco L, Ordovas-Montanes J, Perro M, et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature. 2014;510:157–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Siegel EL, Orbai AM, Ritchlin CT. Targeting extra-articular manifestations in PsA: a closer look at enthesitis and dactylitis. Curr Opin Rheumatol. 2015;27:111–7.

    Article  PubMed  CAS  Google Scholar 

  9. Benjamin M, Moriggl B, Brenner E, Emery P, McGonagle D, Redman S. The “enthesis organ” concept: why enthesopathies may not present as focal insertional disorders. Arthritis Rheum. 2004;50:3306–13.

    Article  PubMed  CAS  Google Scholar 

  10. Benjamin M, McGonagle D. Histopathologic changes at “synovio-entheseal complexes” suggesting a novel mechanism for synovitis in osteoarthritis and spondylarthritis. Arthritis Rheum. 2007;56:3601–9.

    Article  PubMed  Google Scholar 

  11. Benjamin M, McGonagle D. The enthesis organ concept and its relevance to the spondyloarthropathies. Adv Exp Med Biol. 2009;649:57–70.

    Article  PubMed  Google Scholar 

  12. McGonagle D. Imaging the joint and enthesis: insights into pathogenesis of psoriatic arthritis. Ann Rheum Dis. 2005;(64 Suppl 2):ii58–60.

    Google Scholar 

  13. Jacques P, Lambrecht S, Verheugen E, et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann Rheum Dis. 2014;73:437–45.

    Article  PubMed  Google Scholar 

  14. Healy PJ, Helliwell PS. Dactylitis: pathogenesis and clinical considerations. Curr Rheumatol Rep. 2006;8:338–41.

    Article  PubMed  Google Scholar 

  15. Healy PJ, Groves C, Chandramohan M, Helliwell PS. MRI changes in psoriatic dactylitis–extent of pathology, relationship to tenderness and correlation with clinical indices. Rheumatology. 2008;47:92–5.

    Article  PubMed  CAS  Google Scholar 

  16. Benham H, Rehaume LM, Hasnain SZ, et al. Interleukin-23 mediates the intestinal response to microbial beta-1,3-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheumatol. 2014;66:1755–67.

    Article  PubMed  CAS  Google Scholar 

  17. Ruutu M, Thomas G, Steck R, et al. beta-glucan triggers spondylarthritis and Crohn’s disease-like ileitis in SKG mice. Arthritis Rheum. 2012;64:2211–22.

    Article  PubMed  CAS  Google Scholar 

  18. Tan AL, Fukuba E, Halliday NA, Tanner SF, Emery P, McGonagle D. High-resolution MRI assessment of dactylitis in psoriatic arthritis shows flexor tendon pulley and sheath-related enthesitis. Ann Rheum Dis. 2015;74:185–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lowes MA, Suarez-Farinas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol. 2014;32:227–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Menon B, Gullick NJ, Walter GJ, et al. Interleukin-17 + CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis & Rheumatol. 2014;66:1272–81.

    Article  CAS  Google Scholar 

  21. Noordenbos T, Yeremenko N, Gofita I, et al. Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum. 2012;64:99–109.

    Article  PubMed  CAS  Google Scholar 

  22. Raychaudhuri SP. Role of IL-17 in psoriasis and psoriatic arthritis. Clin Rev Allergy Immunol. 2013;44:183–93.

    Article  PubMed  CAS  Google Scholar 

  23. Boyce BF. Advances in osteoclast biology reveal potential new drug targets and new roles for osteoclasts. J Bone Miner Res. 2013;28:711–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Herman S, Muller RB, Kronke G, et al. Induction of osteoclast-associated receptor, a key osteoclast costimulation molecule, in rheumatoid arthritis. Arthritis Rheum. 2008;58:3041–50.

    Article  PubMed  CAS  Google Scholar 

  25. Nakashima T, Takayanagi H. Osteoimmunology: crosstalk between the immune and bone systems. J Clin Immunol. 2009;29:555–67.

    Article  PubMed  Google Scholar 

  26. Ritchlin CT, Haas-Smith SA, Li P, Hicks DG, Schwarz EM. Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest. 2003;111:821–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kikuta J, Wada Y, Kowada T, et al. Dynamic visualization of RANKL and Th17-mediated osteoclast function. J Clin Invest. 2013;123:866–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Sato K, Suematsu A, Okamoto K, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006;203:2673–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Anandarajah AP, Schwarz EM, Totterman S, et al. The effect of etanercept on osteoclast precursor frequency and enhancing bone marrow oedema in patients with psoriatic arthritis. Ann Rheum Dis. 2008;67:296–301.

    Article  PubMed  CAS  Google Scholar 

  30. Notley CA, Inglis JJ, Alzabin S, McCann FE, McNamee KE, Williams RO. Blockade of tumor necrosis factor in collagen-induced arthritis reveals a novel immunoregulatory pathway for Th1 and Th17 cells. J Exp Med. 2008;205:2491–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sieper J, Appel H, Braun J, Rudwaleit M. Critical appraisal of assessment of structural damage in ankylosing spondylitis: implications for treatment outcomes. Arthritis Rheum. 2008;58:649–56.

    Article  PubMed  Google Scholar 

  32. Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 2008;8:387–98.

    Article  PubMed  CAS  Google Scholar 

  33. Nusse R, van Ooyen A, Cox D, Fung YK, Varmus H. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature. 1984;307:131–6.

    Article  PubMed  CAS  Google Scholar 

  34. Pinzone JJ, Hall BM, Thudi NK, et al. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood. 2009;113:517–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Mikheev AM, Mikheeva SA, Rostomily R, Zarbl H. Dickkopf-1 activates cell death in MDA-MB435 melanoma cells. Biochem Biophys Res Commun. 2007;352:675–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene. 2006;25:7469–81.

    Article  PubMed  CAS  Google Scholar 

  37. Hampton PJ, Ross OK, Reynolds NJ. Increased nuclear beta-catenin in suprabasal involved psoriatic epidermis. Br J Dermatol. 2007;157:1168–77.

    Article  PubMed  CAS  Google Scholar 

  38. Seifert O, Soderman J, Skarstedt M, Dienus O, Matussek A. Increased expression of the Wnt signalling inhibitor Dkk-1 in Non-lesional skin and peripheral blood mononuclear cells of patients with plaque psoriasis. Acta Derm Venereol. 2014;95(4):407–10.

    Article  CAS  Google Scholar 

  39. Kim KA, Wagle M, Tran K, et al. R-Spondin family members regulate the Wnt pathway by a common mechanism. Mol Biol Cell. 2008;19:2588–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Diarra D, Stolina M, Polzer K, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 2007;13:156–63.

    Article  PubMed  CAS  Google Scholar 

  41. Marshall MJ, Evans SF, Sharp CA, Powell DE, McCarthy HS, Davie MW. Increased circulating Dickkopf-1 in Paget’s disease of bone. Clin Biochem. 2009;42:965–9.

    Article  PubMed  CAS  Google Scholar 

  42. Rawadi G, Roman-Roman S. Wnt signalling pathway: a new target for the treatment of osteoporosis. Expert Opin Ther Targets. 2005;9:1063–77.

    Article  PubMed  CAS  Google Scholar 

  43. Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling. WNT and transforming growth factor-beta/bone morphogenic protein signalling. Arthritis Res Ther. 2007;9:R100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kwon SR, Lim MJ, Suh CH, et al. Dickkopf-1 level is lower in patients with ankylosing spondylitis than in healthy people and is not influenced by anti-tumor necrosis factor therapy. Rheumatol Int. 2012;32(8):2523–7.

    Article  PubMed  CAS  Google Scholar 

  45. Honsawek S, Tanavalee A, Yuktanandana P, Ngarmukos S, Saetan N, Tantavisut S. Dickkopf-1 (Dkk-1) in plasma and synovial fluid is inversely correlated with radiographic severity of knee osteoarthritis patients. BMC Musculoskelet Disord. 2010;11:257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Daoussis D, Andonopoulos AP. The emerging role of dickkopf-1 in bone biology: is it the main switch controlling bone and joint remodeling? Semin Arthritis Rheum. 2011;41(2):170–7.

    Article  PubMed  CAS  Google Scholar 

  47. Garnero P, Tabassi NC, Voorzanger-Rousselot N. Circulating dickkopf-1 and radiological progression in patients with early rheumatoid arthritis treated with etanercept. J Rheumatol. 2008;35:2313–5.

    Article  PubMed  CAS  Google Scholar 

  48. Yavropoulou MP, Yovos JG. The role of the Wnt signaling pathway in osteoblast commitment and differentiation. Hormones (Athens). 2007;6:279–94.

    Article  Google Scholar 

  49. Massague J. How cells read TGF-beta signals. Nat Rev Mol Cell Biol. 2000;1:169–78.

    Article  PubMed  CAS  Google Scholar 

  50. Chen HA, Chen CH, Lin YJ, et al. Association of bone morphogenetic proteins with spinal fusion in ankylosing spondylitis. J Rheumatol. 2010;37:2126–32.

    Article  PubMed  CAS  Google Scholar 

  51. Park MC, Chung SJ, Park YB, Lee SK. Bone and cartilage turnover markers, bone mineral density, and radiographic damage in men with ankylosing spondylitis. Yonsei Med J. 2008;49:288–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Gitelman SE, Kobrin MS, Ye JQ, Lopez AR, Lee A, Derynck R. Recombinant Vgr-1/BMP-6-expressing tumors induce fibrosis and endochondral bone formation in vivo. J Cell Biol. 1994;126:1595–609.

    Article  PubMed  CAS  Google Scholar 

  53. Lories RJ, Luyten FP, de Vlam K. Progress in spondylarthritis. Mechanisms of new bone formation in spondyloarthritis. Arthritis Res Ther. 2009;11:221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lories RJ, Derese I, Luyten FP. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J Clin Invest. 2005;115:1571–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Joo YB, Bang SY, Kim TH, et al. Bone morphogenetic protein 6 polymorphisms are associated with radiographic progression in ankylosing spondylitis. PLoS One. 2014;9:e104966.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ward MM, Reveille JD, Learch TJ, Davis Jr JC, Weisman MH. Occupational physical activities and long-term functional and radiographic outcomes in patients with ankylosing spondylitis. Arthritis Rheum. 2008;59:822–32.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Terauchi M, Li JY, Bedi B, et al. T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab. 2009;10:229–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Baraliakos X, Listing J, Rudwaleit M, Sieper J, Braun J. The relationship between inflammation and new bone formation in patients with ankylosing spondylitis. Arthritis Res Ther. 2008;10:R104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Maksymowych WP, Chiowchanwisawakit P, Clare T, Pedersen SJ, Ostergaard M, Lambert RG. Inflammatory lesions of the spine on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis: evidence of a relationship between inflammation and new bone formation. Arthritis Rheum. 2009;60:93–102.

    Article  PubMed  Google Scholar 

  60. Uderhardt S, Diarra D, Katzenbeisser J, et al. Blockade of Dickkopf (DKK)-1 induces fusion of sacroiliac joints. Ann Rheum Dis. 2010;69:592–7.

    Article  PubMed  CAS  Google Scholar 

  61. Senolt L, Hulejova H, Krystufkova O, et al. Low circulating Dickkopf-1 and its link with severity of spinal involvement in diffuse idiopathic skeletal hyperostosis. Ann Rheum Dis. 2012;71(1):71–4.

    Article  PubMed  CAS  Google Scholar 

  62. Daoussis D, Liossis SN, Solomou EE, et al. Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis Rheum. 2010;62:150–8.

    Article  PubMed  CAS  Google Scholar 

  63. Rothschild BM. Primate spondyloarthropathy. Curr Rheumatol Rep. 2005;7:173–81.

    Article  PubMed  Google Scholar 

  64. Wang Y, Chen J, Zhao Y, Geng L, Song F, Chen HD. Psoriasis is associated with increased levels of serum leptin. Br J Dermatol. 2008;158:1134–5.

    Article  PubMed  CAS  Google Scholar 

  65. Cook PW, Brown JR, Cornell KA, Pittelkow MR. Suprabasal expression of human amphiregulin in the epidermis of transgenic mice induces a severe, early-onset, psoriasis-like skin pathology: expression of amphiregulin in the basal epidermis is also associated with synovitis. Exp Dermatol. 2004;13:347–56.

    Article  PubMed  CAS  Google Scholar 

  66. Sherlock JP, Joyce-Shaikh B, Turner SP, et al. IL-23 induces spondyloarthropathy by acting on ROR-gammat + CD3 + CD4-CD8- entheseal resident T cells. Nat Med. 2012;18:1069–76.

    Article  PubMed  CAS  Google Scholar 

  67. Zenz R, Eferl R, Kenner L, et al. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature. 2005;437:369–75.

    Article  PubMed  CAS  Google Scholar 

  68. Bardos T, Zhang J, Mikecz K, David CS, Glant TT. Mice lacking endogenous major histocompatibility complex class II develop arthritis resembling psoriatic arthritis at an advanced age. Arthritis Rheum. 2002;46:2465–75.

    Article  PubMed  CAS  Google Scholar 

  69. Rehaume LM, Mondot S, Aguirre de Carcer D, et al. ZAP-70 genotype disrupts the relationship between microbiota and host, leading to spondyloarthritis and ileitis in SKG mice. Arthritis Rheumatol. 2014;66:2780–92.

    Article  PubMed  CAS  Google Scholar 

  70. Khmaladze I, Kelkka T, Guerard S, et al. Mannan induces ROS-regulated, IL-17A-dependent psoriasis arthritis-like disease in mice. Proc Natl Acad Sci U S A. 2014;111:E3669–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Retser E, Schied T, Skryabin BV, et al. Doxycycline-induced expression of transgenic human tumor necrosis factor alpha in adult mice results in psoriasis-like arthritis. Arthritis Rheum. 2013;65:2290–300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Lories RJ, Matthys P, de Vlam K, Derese I, Luyten FP. Ankylosing enthesitis, dactylitis, and onychoperiostitis in male DBA/1 mice: a model of psoriatic arthritis. Ann Rheum Dis. 2004;63:595–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Braem K, Carter S, Lories RJ. Spontaneous arthritis and ankylosis in male DBA/1 mice: further evidence for a role of behavioral factors in “stress-induced arthritis”. Biol Proced Online. 2012;14:10.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Khare SD, Luthra HS, David CS. Spontaneous inflammatory arthritis in HLA-B27 transgenic mice lacking beta 2-microglobulin: a model of human spondyloarthropathies. J Exp Med. 1995;182:1153–8.

    Article  PubMed  CAS  Google Scholar 

  75. Yanagisawa H, Richardson JA, Taurog JD, Hammer RE. Characterization of psoriasiform and alopecic skin lesions in HLA-B27 transgenic rats. Am J Pathol. 1995;147:955–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Yamamoto M, Nakajima K, Takaishi M, et al. Psoriatic inflammation facilitates the onset of arthritis in a mouse model. J Invest Dermatol. 2015;135:445–53.

    Article  PubMed  CAS  Google Scholar 

  77. Li X, Commane M, Nie H, et al. Act1, an NF-kappa B-activating protein. Proc Natl Acad Sci U S A. 2000;97:10489–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. DeSelm CJ, Takahata Y, Warren J, et al. IL-17 mediates estrogen-deficient osteoporosis in an Act1-dependent manner. J Cell Biochem. 2012;113:2895–902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Haroon N, Maksymowych W, Rahman P, Tsui F, O’Shea F, Inman R. Radiographic severity in ankylosing spondylitis is associated with polymorphism in large multifunctional peptidase 2 (LMP2) in the SPARCC cohort. Arthritis Rheum. 2012;64(4):1119–26.

    Article  PubMed  CAS  Google Scholar 

  80. Ramiro S, Stolwijk C, van Tubergen A, et al. Evolution of radiographic damage in ankylosing spondylitis: a 12 year prospective follow-up of the OASIS study. Ann Rheum Dis. 2015;74:52–9.

    Article  PubMed  Google Scholar 

  81. Ward MM, Hendrey MR, Malley JD, et al. Clinical and immunogenetic prognostic factors for radiographic severity in ankylosing spondylitis. Arthritis Rheum. 2009;61:859–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Bartolome N, Szczypiorska M, Sanchez A, et al. Genetic polymorphisms inside and outside the MHC improve prediction of AS radiographic severity in addition to clinical variables. Rheumatology (Oxford). 2012;51:1471–8.

    Article  CAS  Google Scholar 

  83. Australo-Anglo-American Spondyloarthritis Consortium (TASC), Reveille JD, Sims AM, et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat Genet. 2010;42:123–7.

    Article  CAS  Google Scholar 

  84. Chen C, Zhang X, Wang Y. ANTXR2 and IL-1R2 polymorphisms are not associated with ankylosing spondylitis in Chinese Han population. Rheumatol Int. 2012;32:15–9.

    Article  PubMed  CAS  Google Scholar 

  85. Guo C, Xia Y, Yang Q, Qiu R, Zhao H, Liu Q. Association of the ANTXR2 gene polymorphism and ankylosing spondylitis in Chinese Han. Scand J Rheumatol. 2012;41:29–32.

    Article  PubMed  CAS  Google Scholar 

  86. The Australo-Anglo-American Spondyloarthritis Consortium (TASC), the Wellcome Trust Case Control Consortium 2 (WTCCC2), Evans DM, et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet. 2011;43:761–7.

    Article  CAS  Google Scholar 

  87. Wei W, Lu Q, Chaudry GJ, Leppla SH, Cohen SN. The LDL receptor-related protein LRP6 mediates internalization and lethality of anthrax toxin. Cell. 2006;124:1141–54.

    Article  PubMed  CAS  Google Scholar 

  88. Minamizaki T, Yoshiko Y, Kozai K, Aubin JE, Maeda N. EP2 and EP4 receptors differentially mediate MAPK pathways underlying anabolic actions of prostaglandin E2 on bone formation in rat calvaria cell cultures. Bone. 2009;44:1177–85.

    Article  PubMed  CAS  Google Scholar 

  89. Wanders A, Heijde D, Landewe R, et al. Nonsteroidal antiinflammatory drugs reduce radiographic progression in patients with ankylosing spondylitis: a randomized clinical trial. Arthritis Rheum. 2005;52:1756–65.

    Article  PubMed  CAS  Google Scholar 

  90. Poddubnyy D, Rudwaleit M, Haibel H, et al. Effect of non-steroidal anti-inflammatory drugs on radiographic spinal progression in patients with axial spondyloarthritis: results from the German Spondyloarthritis Inception Cohort. Ann Rheum Dis. 2012;71(10):1616–22.

    Article  PubMed  CAS  Google Scholar 

  91. Lin Z, Bei JX, Shen M, et al. A genome-wide association study in Han Chinese identifies new susceptibility loci for ankylosing spondylitis. Nat Genet. 2011;44:73–7.

    Article  PubMed  CAS  Google Scholar 

  92. Jacobsen KS, Zeeberg K, Sauter DR, Poulsen KA, Hoffmann EK, Schwab A. The role of TMEM16A (ANO1) and TMEM16F (ANO6) in cell migration. Pflugers Arch. 2013;465:1753–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Ehlen HW, Chinenkova M, Moser M, et al. Inactivation of anoctamin-6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues. J Bone Miner Res. 2013;28:246–59.

    Article  PubMed  CAS  Google Scholar 

  94. Watanabe H, Yamada Y. Mice lacking link protein develop dwarfism and craniofacial abnormalities. Nat Genet. 1999;21:225–9.

    Article  PubMed  CAS  Google Scholar 

  95. Austin AK, Hobbs RN, Anderson JC, Butler RC, Ashton BA. Humoral immunity to link protein in patients with inflammatory joint disease, osteoarthritis, and in non-arthritic controls. Ann Rheum Dis. 1988;47:886–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Urano T, Narusawa K, Shiraki M, et al. Single-nucleotide polymorphism in the hyaluronan and proteoglycan link protein 1 (HAPLN1) gene is associated with spinal osteophyte formation and disc degeneration in Japanese women. Eur Spine J. 2011;20:572–7.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Choi EY, Chavakis E, Czabanka MA, et al. Del-1, an endogenous leukocyte-endothelial adhesion inhibitor, limits inflammatory cell recruitment. Science. 2008;322:1101–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Takai A, Inomata H, Arakawa A, Yakura R, Matsuo-Takasaki M, Sasai Y. Anterior neural development requires Del1, a matrix-associated protein that attenuates canonical Wnt signaling via the Ror2 pathway. Development. 2010;137:3293–302.

    Article  PubMed  CAS  Google Scholar 

  99. Eskan MA, Jotwani R, Abe T, et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat Immunol. 2012;13:465–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Cortes A, Maksymowych WP, Wordsworth BP, et al. Association study of genes related to bone formation and resorption and the extent of radiographic change in ankylosing spondylitis. Ann Rheum Dis. 2015;74(7):1387–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Maksymowych WP, Adlam N, Lind D, Russell AS. Polymorphism of the LMP2 gene and disease phenotype in ankylosing spondylitis: no association with disease severity. Clin Rheumatol. 1997;16:461–5.

    Article  PubMed  CAS  Google Scholar 

  102. Kavanaugh A, McInnes IB, Mease P, et al. Clinical efficacy, radiographic and safety findings through 5 years of subcutaneous golimumab treatment in patients with active psoriatic arthritis: results from a long-term extension of a randomised, placebo-controlled trial (the GO-REVEAL study). Ann Rheum Dis. 2014;73:1689–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ritchlin CT, Kavanaugh A, Gladman DD, et al. Treatment recommendations for psoriatic arthritis. Ann Rheum Dis. 2009;68:1387–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Mease PJ, Fleischmann R, Deodhar AA, et al. Effect of certolizumab pegol on signs and symptoms in patients with psoriatic arthritis: 24-week results of a Phase 3 double-blind randomised placebo-controlled study (RAPID-PsA). Ann Rheum Dis. 2014;73:48–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Kavanaugh A, Ritchlin C, Rahman P, et al. Ustekinumab, an anti-IL-12/23 p40 monoclonal antibody, inhibits radiographic progression in patients with active psoriatic arthritis: results of an integrated analysis of radiographic data from the phase 3, multicentre, randomised, double-blind, placebo-controlled PSUMMIT-1 and PSUMMIT-2 trials. Ann Rheum Dis. 2014;73:1000–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Mease PJ, McInnes IB, Kirkham B, et al. Secukinumab, a human anti–interleukin-17A monoclonal antibody, improves active psoriatic arthritis and inhibits radiographic progression: efficacy and safety data from a phase 3 randomized, multicenter, double-blind, placebo-controlled study. Arthritis Rheum. 2014;66:963.

    Google Scholar 

  107. Kroon F, Landewe R, Dougados M, van der Heijde D. Continuous NSAID use reverts the effects of inflammation on radiographic progression in patients with ankylosing spondylitis. Ann Rheum Dis. 2012;71(10):1623–9.

    Article  PubMed  CAS  Google Scholar 

  108. Spiro AS, Beil FT, Baranowsky A, et al. BMP-7-induced ectopic bone formation and fracture healing is impaired by systemic NSAID application in C57BL/6-mice. J Orthop Res. 2010;28:785–91.

    PubMed  CAS  Google Scholar 

  109. Li Q, Zhang Z, Cai Z. High-dose ketorolac affects adult spinal fusion: a meta-analysis of the effect of perioperative nonsteroidal anti-inflammatory drugs on spinal fusion. Spine (Phila Pa 1976). 2011;36:E461–8.

    Article  Google Scholar 

  110. Glassman SD, Rose SM, Dimar JR, Puno RM, Campbell MJ, Johnson JR. The effect of postoperative nonsteroidal anti-inflammatory drug administration on spinal fusion. Spine (Phila Pa 1976). 1998;23:834–8.

    Article  CAS  Google Scholar 

  111. van der Heijde D, Landewe R, Einstein S, et al. Radiographic progression of ankylosing spondylitis after up to two years of treatment with etanercept. Arthritis Rheum. 2008;58:1324–31.

    Article  PubMed  CAS  Google Scholar 

  112. van der Heijde D, Landewe R, Baraliakos X, et al. Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheum. 2008;58:3063–70.

    Article  PubMed  Google Scholar 

  113. van der Heijde D, Salonen D, Weissman BN, et al. Assessment of radiographic progression in the spines of patients with ankylosing spondylitis treated with adalimumab for up to 2 years. Arthritis Res Ther. 2009;11:R127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Baraliakos X, Listing J, Brandt J, et al. Radiographic progression in patients with ankylosing spondylitis after 4 yrs of treatment with the anti-TNF-alpha antibody infliximab. Rheumatology (Oxford). 2007;46:1450–3.

    Article  CAS  Google Scholar 

  115. Haroon N, Inman RD, Learch TJ, et al. The impact of tumor necrosis factor alpha inhibitors on radiographic progression in ankylosing spondylitis. Arthritis Rheum. 2013;65:2645–54.

    PubMed  PubMed Central  CAS  Google Scholar 

  116. Baraliakos X, Haibel H, Listing J, Sieper J, Braun J. Continuous long-term anti-TNF therapy does not lead to an increase in the rate of new bone formation over 8 years in patients with ankylosing spondylitis. Ann Rheum Dis. 2014;73(4):710–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigil Haroon MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Haroon, N., Ritchlin, C. (2016). Mechanisms of Bone Remodelling in Psoriatic Arthritis. In: Adebajo, A., Boehncke, WH., Gladman, D., Mease, P. (eds) Psoriatic Arthritis and Psoriasis. Springer, Cham. https://doi.org/10.1007/978-3-319-19530-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19530-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19529-2

  • Online ISBN: 978-3-319-19530-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics