Skip to main content

Update on the Genetics of Psoriatic Arthritis

  • Chapter
  • First Online:
Psoriatic Arthritis and Psoriasis

Abstract

Psoriatic arthritis (PsA) is a common disease arising from a complex interplay between genetic, environmental and immune related factors. PsA exhibits one of the largest known recurrence risks among first degree relatives in a complex rheumatic disease. While there is substantive evidence supporting a strong genetic component of PsA, it has been difficult to elucidate genes specific to PsA pathogenesis. Investigating the genetic etiology of PsA is inherently challenging given the existence of gene-gene interactions, gene-environment interactions as well as a potential contribution of copy number variants (CNVs) and epigenetic factors. This chapter will provide an overview of the genetics basis of PsA focusing on candidate gene studies, genome-wide linkage and association-based studies, in addition to highlighting the genetics related to PsA pharmacotherapy (i.e., pharmacogenetics).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moll JM, Wright V. Familial occurrence of psoriatic arthritis. Ann Rheum Dis. 1973;32:181–201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Chandran V, Schentag CT, Brockbank JE, Pellett FJ, Shanmugarajah S, Toloza SM, et al. Familial aggregation of psoriatic arthritis. Ann Rheum Dis. 2009;68:664–7.

    Article  PubMed  CAS  Google Scholar 

  3. Henseler T, Christophers E. Psoriasis of early and late onset: characterization of two types of psoriasis vulgaris. J Am Acad Dermatol. 1985;13:450–6.

    Article  PubMed  CAS  Google Scholar 

  4. Russell TJ, Schultes LM, Kuban DJ. Histocompatibility (HL-A) antigens associated with psoriasis. N Engl J Med. 1972;287:738–40.

    Article  PubMed  CAS  Google Scholar 

  5. Feng BJ, Sun LD, Soltani-Arabshahi R, Bowcock AM, Nair RP, Stuart P, et al. Multiple Loci within the major histocompatibility complex confer risk of psoriasis. PLoS Genet. 2009;5:e1000606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Enerback C, Martinsson T, Inerot A, Wahlstrom J, Enlund F, Yhr M, et al. Evidence that HLA-Cw6 determines early onset of psoriasis, obtained using sequence-specific primers (PCR-SSP). Acta Derm Venereol. 1997;77:273–6.

    PubMed  CAS  Google Scholar 

  7. Gudjonsson JE, Karason A, Runarsdottir EH, Antonsdottir AA, Hauksson VB, Jónsson HH, et al. Distinct clinical differences between HLA-Cw*0602 positive and negative psoriasis patients – an analysis of 1019 HLA-C- and HLA-B-typed patients. J Invest Dermatol. 2006;126:740–5.

    Article  PubMed  CAS  Google Scholar 

  8. Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consortium 2, Strange A, Capon F, Spencer CC, Knight J, Weale ME, Allen MH, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet. 2010;42:985–90.

    Article  CAS  Google Scholar 

  9. Espinoza LR, Vasey FB, Gaylord SW, Dietz C, Bergen L, Bridgeford P, et al. Histocompatibility typing in the seronegative spondyloarthropathies: a survey. Semin Arthritis Rheum. 1982;11:375–81.

    Article  PubMed  CAS  Google Scholar 

  10. Lopez-Larrea C, Torre Alonso JC, Rodriguez Perez A, Coto E. HLA antigens in psoriatic arthritis subtypes of a Spanish population. Ann Rheum Dis. 1990;49:318–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. McHugh NJ, Laurent MR, Treadwell BL, Tweed JM, Dagger J. Psoriatic arthritis: clinical subgroups and histocompatibility antigens. Ann Rheum Dis. 1987;46:184–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chandran V, Bull SB, Pellett FJ, Ayearst R, Rahman P, Gladman DD. Human leukocyte antigen alleles and susceptibility to psoriatic arthritis. Hum Immunol. 2013;74:1333–8.

    Article  PubMed  CAS  Google Scholar 

  13. Winchester R, Minevich G, Steshenko V, Kirby B, Kane D, Greenberg DA, et al. HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype. Arthritis Rheum. 2012;64:1134–44.

    Article  PubMed  CAS  Google Scholar 

  14. Ho PY, Barton A, Worthington J, Plant D, Griffiths CE, Young HS, et al. Investigating the role of the HLA-Cw*06 and HLA-DRB1 genes in susceptibility to psoriatic arthritis: comparison with psoriasis and undifferentiated inflammatory arthritis. Ann Rheum Dis. 2008;67:677–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Eder L, Chandran V, Pellet F, Shanmugarajah S, Rosen CF, Bull SB, et al. Human leucocyte antigen risk alleles for psoriatic arthritis among patients with psoriasis. Ann Rheum Dis. 2012;71:50–5.

    Article  PubMed  Google Scholar 

  16. Queiro R, Gonzalez S, Lopez-Larrea C, Alperi M, Sarasqueta C, Riestra JL, et al. HLA-C locus alleles may modulate the clinical expression of psoriatic arthritis. Arthritis Res Ther. 2006;8:R185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Eder L, Chandran V, Pellett F, Shanmugarajah S, Rosen CF, Bull SB, et al. Differential human leucocyte allele association between psoriasis and psoriatic arthritis: a family-based association study. Ann Rheum Dis. 2012;71:1361–5.

    Article  PubMed  Google Scholar 

  18. Chandran V, Tolusso DC, Cook RJ, Gladman DD. Risk factors for axial inflammatory arthritis in patients with psoriatic arthritis. J Rheumatol. 2010;37:809–15.

    Article  PubMed  Google Scholar 

  19. Queiro R, Torre JC, Gonzalez S, Lopez-Larrea C, Tinture T, Lopez-Lagunas I. HLA antigens may influence the age of onset of psoriasis and psoriatic arthritis. J Rheumatol. 2003;30:505–7.

    PubMed  Google Scholar 

  20. Gladman DD, Farewell VT. The role of HLA antigens as indicators of disease progression in psoriatic arthritis. Multivariate relative risk model. Arthritis Rheum. 1995;38:845–50.

    Article  PubMed  CAS  Google Scholar 

  21. Haroon M, Winchester R, Giles JT, Heffernan E, FitzGerald O. Certain class I HLA alleles and haplotypes implicated in susceptibility play a role in determining specific features of the psoriatic arthritis phenotype. Ann Rheum Dis. 2014. pii: annrheumdis-2014-205461. doi: 10.1136/annrheumdis-2014-205461. [Epub ahead of print]

    Google Scholar 

  22. Okada Y, Han B, Tsoi LC, Stuart PE, Ellinghaus E, Tejasvi T, et al. Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am J Hum Genet. 2014;95:162–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chandran V, Rahman P. Update on the genetics of spondyloarthritis – ankylosing spondylitis and psoriatic arthritis. Best Pract Res Clin Rheumatol. 2010;24:579–88.

    Article  PubMed  CAS  Google Scholar 

  24. Zhu J, Qu H, Chen X, Wang H, Li J. Single nucleotide polymorphisms in the tumor necrosis factor-alpha gene promoter region alter the risk of psoriasis vulgaris and psoriatic arthritis: a meta-analysis. PLoS One. 2013;8:e64376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Gonzalez S, Martinez-Borra J, Torre-Alonso JC, Gonzalez-Roces S, Sanchez del Río J, Rodriguez Pérez A, et al. The MICA-A9 triplet repeat polymorphism in the transmembrane region confers additional susceptibility to the development of psoriatic arthritis and is independent of the association of Cw*0602 in psoriasis. Arthritis Rheum. 1999;42:1010–6.

    Article  PubMed  CAS  Google Scholar 

  26. Eder L, Chandran V, Gladman DD. What have we learned about genetic susceptibility in psoriasis and psoriatic arthritis? Curr Opin Rheumatol. 2015;27:91–8.

    Article  PubMed  CAS  Google Scholar 

  27. Zhu KJ, Zhu CY, Shi G, Fan YM. Association of IL23R polymorphisms with psoriasis and psoriatic arthritis: a meta-analysis. Inflamm Res. 2012;61:1149–54.

    Article  PubMed  CAS  Google Scholar 

  28. Zhu KJ, Zhu CY, Shi G, Fan YM. Meta-analysis of IL12B polymorphisms (rs3212227, rs6887695) with psoriasis and psoriatic arthritis. Rheumatol Int. 2013;33:1785–90.

    Article  PubMed  CAS  Google Scholar 

  29. Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225–74.

    Article  PubMed  CAS  Google Scholar 

  30. Chandran V, Bull SB, Pellett FJ, et al. Killer-cell immunoglobulin-like receptor gene polymorphisms and susceptibility to psoriatic arthritis. Rheumatology. 2014;53:233–9.

    Article  PubMed  CAS  Google Scholar 

  31. Cénit MC, Ortego-Centeno N, Raya E, Callejas JL, García-Hernandez FJ, Castillo-Palma MJ, et al. Influence of the STAT3 genetic variants in the susceptibility to psoriatic arthritis and Behcet’s disease. Hum Immunol. 2013;74:230–3.

    Article  PubMed  CAS  Google Scholar 

  32. Apel M, Uebe S, Bowes J, Giardina E, Korendowych E, Juneblad K, et al. Variants in RUNX3 contribute to susceptibility to psoriatic arthritis, exhibiting further common ground with ankylosing spondylitis. Arthritis Rheum. 2013;65:1224–31.

    Article  PubMed  CAS  Google Scholar 

  33. Karason A, Gudjonsson JE, Upmanyu R, Antonsdottir AA, Hauksson VB, Runasdottir EH, et al. A susceptibility gene for psoriatic arthritis maps to chromosome 16q: evidence for imprinting. Am J Hum Genet. 2003;72:125–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bowes J, Orozco G, Flynn E, Ho P, Brier R, Marzo-Ortega H, et al. Confirmation of TNIP1 and IL23A as susceptibility loci for psoriatic arthritis. Ann Rheum Dis. 2011;70:1641–4.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu Y, Helms C, Liao W, Zaba LC, Duan S, Gardner J, et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet. 2008;4:e1000041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hüffmeier U, Uebe S, Ekici AB, Bowes J, Giardina E, Korendowych E, et al. Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nat Genet. 2010;42:996–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Stuart PE, Nair RP, Ellinghaus E, Ding J, Tejasvi T, Gudjonsson JE, et al. Genome-wide association analysis identifies three psoriasis susceptibility loci. Nat Genet. 2010;42:1000–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ellinghaus E, Ellinghaus D, Stuart PE, Nair RP, Debrus S, Raelson JV, et al. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat Genet. 2010;42:991–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ellinghaus E, Stuart PE, Ellinghaus D, Nair RP, Debrus S, Raelson JV, et al. Genome-wide meta-analysis of psoriatic arthritis identifies susceptibility locus at REL. J Invest Dermatol. 2012;132:1133–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 2009;30:383–91.

    Article  PubMed  CAS  Google Scholar 

  41. Verstrepen L, Carpentier I, Verhelst K, Beyaert R. ABINs: A20 binding inhibitors of NF-kappa B and apoptosis signaling. Biochem Pharmacol. 2009;78:105–14.

    Article  PubMed  CAS  Google Scholar 

  42. De Molfetta GA, Lucíola Zanette D, Alexandre Panepucci R, Dos Santos AR, da Silva Jr WA, Antonio Zago M. Role of NFKB2 on the early myeloid differentiation of CD34+ hematopoietic stem/progenitor cells. Differentiation. 2010;80:195–203.

    Article  PubMed  CAS  Google Scholar 

  43. Lowenstein CJ, Padalko E. iNOS (NOS2) at a glance. J Cell Sci. 2004;117:2865–7.

    Article  PubMed  CAS  Google Scholar 

  44. Strobl B, Stoiber D, Sexl V, Mueller M. Tyrosine kinase 2 (TYK2) in cytokine signaling and host immunity. Front Biosci. 2011;16:3214–32.

    Article  Google Scholar 

  45. Ritchlin CT, Haas-Smith SA, Li P, Hicks DG, Schwarz EM. Mechanisms of TNFalpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest. 2003;111:821–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Miossec P. IL-17 and Th17 cells in human inflammatory diseases. Microbes Infect. 2009;11:625–30.

    Article  PubMed  CAS  Google Scholar 

  47. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13:715–25.

    Article  PubMed  CAS  Google Scholar 

  48. Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002;168:5699–708.

    Article  PubMed  CAS  Google Scholar 

  49. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Pappu R, Ramirez-Carrozzi V, Sambandam A. The interleukin-17 cytokine family: critical players in host defence and inflammatory diseases. Immunology. 2011;134:8–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. McGeachy MJ, Cua DJ. The link between IL-23 and Th17 cell-mediated immune pathologies. Semin Immunol. 2007;19:372–6.

    Article  PubMed  CAS  Google Scholar 

  52. Cheung PF, Wong CK, Lam CW. Molecular mechanisms of cytokine and chemokine release from eosinophils activated by IL-17A, IL-17F, and IL-23: implication for Th17 lymphocytes-mediated allergic inflammation. J Immunol. 2008;180:5625–35.

    Article  PubMed  CAS  Google Scholar 

  53. Sønder SU, Saret S, Tang W, Sturdevant DE, Porcella SF, Siebenlist U. IL-17-induced NF-kappaB activation via CIKS/Act1: physiologic significance and signaling mechanisms. J Biol Chem. 2011;286:12881–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Li X, Commane M, Nie H, Hua X, Chatterjee-Kishore M, Wald D, et al. Act1, an NF-kappa B-activating protein. Proc Natl Acad Sci U S A. 2000;97:10489–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Fujioka S, Niu J, Schmidt C, Sclabas GM, Peng B, Uwagawa T, et al. NF-kappaB and AP-1 connection: mechanism of NF-kappaB-dependent regulation of AP-1 activity. Mol Cell Biol. 2004;24:7806–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Bulek K, Liu C, Swaidani S, Wang L, Page RC, Gulen MF, et al. The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation. Nat Immunol. 2011;12:844–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Chiricozzi A, Guttman-Yassky E, Suarez-Farinas M, Nograles KE, Tian S, Cardinale I, et al. Integrative responses to IL-17 and TNF-a in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol. 2011;131:677–87.

    Article  PubMed  CAS  Google Scholar 

  58. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.

    Article  PubMed  CAS  Google Scholar 

  59. Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity. 2008;28:29–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Hoeve MA, Savage ND, de Boer T, Langenberg DM, de Waal Malefyt R, Ottenhoff TH, et al. Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells. Eur J Immunol. 2006;36:661–70.

    Article  PubMed  CAS  Google Scholar 

  61. Korn T, Bettelli E, Gao W, Awasthi A, Jäger A, Strom TB, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature. 2007;448:484–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, Ma L, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature. 2007;448:480–3.

    Article  PubMed  CAS  Google Scholar 

  63. Chen H, Poon A, Yeung C, Helms C, Pons J, Bowcock AM, et al. A genetic risk score combining ten psoriasis risk loci improves disease prediction. PLoS One. 2011;6:e19454.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Cronstein BN. Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev. 2005;57:163–72.

    Article  PubMed  CAS  Google Scholar 

  65. Zachariae H, Sogaard H. Liver biopsy in psoriasis. A controlled study. Dermatologica. 1973;146:149–55.

    Article  PubMed  CAS  Google Scholar 

  66. Chandran V, Siannis F, Rahman P, Pellett FJ, Farewell VT, Gladman DD. Folate pathway enzyme gene polymorphisms and the efficacy and toxicity of methotrexate in psoriatic arthritis. J Rheumatol. 2010;37:1508–12.

    Article  PubMed  CAS  Google Scholar 

  67. Murdaca G, Gulli R, Spanò F, Lantieri F, Burlando M, Parodi A, et al. TNF-α gene polymorphisms: association with disease susceptibility and response to anti-TNF-α treatment in psoriatic arthritis. J Invest Dermatol. 2014;134:2503–9.

    Article  PubMed  CAS  Google Scholar 

  68. Seitz M, Wirthmüller U, Möller B, Villiger PM. The −308 tumour necrosis factor-alpha gene polymorphism predicts therapeutic response to TNFalpha-blockers in rheumatoid arthritis and spondyloarthritis patients. Rheumatology (Oxford). 2007;46:93–6.

    Article  CAS  Google Scholar 

  69. Morales-Lara MJ, Cañete JD, Torres-Moreno D, Hernández MV, Pedrero F, Celis R, et al. Effects of polymorphisms in TRAILR1 and TNFR1A on the response to anti-TNF therapies in patients with rheumatoid and psoriatic arthritis. Joint Bone Spine. 2012;79:591–6.

    Article  PubMed  CAS  Google Scholar 

  70. Pundt N, Peters MA, Wunrau C, Strietholt S, Fehrmann C, Neugebauer K, et al. Susceptibility of rheumatoid arthritis synovial fibroblasts to FasL- and TRAIL-induced apoptosis is cell cycle-dependent. Arthritis Res Ther. 2009;11:R16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Hofbauer LC, Schoppet M, Christ M, Teichmann J, Lange U. Tumour necrosis factor-related apoptosis-inducing ligand and osteoprotegerin serum levels in psoriatic arthritis. Rheumatology (Oxford). 2006;45:1218–22.

    Article  CAS  Google Scholar 

  72. Ramírez J, Fernández-Sueiro JL, López-Mejías R, Montilla C, Arias M, Moll C, et al. FCGR2A/CD32A and FCGR3A/CD16A variants and EULAR response to tumor necrosis factor-α blockers in psoriatic arthritis: a longitudinal study with 6 months of followup. J Rheumatol. 2012;39:1035–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Proton Rahman MD, MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

O’Rielly, D.D., Eder, L., Rahman, P. (2016). Update on the Genetics of Psoriatic Arthritis. In: Adebajo, A., Boehncke, WH., Gladman, D., Mease, P. (eds) Psoriatic Arthritis and Psoriasis. Springer, Cham. https://doi.org/10.1007/978-3-319-19530-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19530-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19529-2

  • Online ISBN: 978-3-319-19530-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics