Skip to main content

Nanoscale Imaging Using Coherent and Incoherent Laboratory Based Soft X-Ray Sources

  • Conference paper
  • First Online:
X-Ray Lasers 2014

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 169))

  • 1117 Accesses

Abstract

Nanoscale imaging of biological samples in the lab as well as mask inspection in extreme ultraviolet lithography near the production line with sub 30 nm resolution require high spectral brightness soft x-ray sources. Laser produced plasma (LPP) sources and plasma based X-ray lasers (XRL) emit soft X-ray radiation in the wavelength region of interest between 2 and 20 nm. Whereas LPP sources easily can be tuned to the so called water window (2.2–4.4 nm) the output of an XRL is restricted to relatively few fixed wavelengths in the extreme ultraviolet range. However due to the relatively high degree of coherence the XRL is well suited also for nanoscale imaging using coherent techniques like coherent diffraction imaging or Fourier transform holography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martz, D.H., Selin, M., von Hofsten O., Fogelqvist, E., et al.: High average brightness water window source for short-exposure cryomicroscopy. Opt. Lett. 37, 4425–4427 (2012)

    Article  ADS  Google Scholar 

  2. Legall, H., Blobel, G., Stiel, H., Sandner, W., et al.: Compact x-ray microscope for the water window based on a high brightness laser plasma source. Opt. Express. 20, 18362–18369 (2012)

    Article  ADS  Google Scholar 

  3. Vaschenko, G., Brewer, C., Brizuela, F., Wang, Y., et al.: Sub-38 nm resolution tabletop microscopy with 13 nm wavelength laser light. Opt. Lett. 31, 1214–1216 (2006)

    Article  ADS  Google Scholar 

  4. Chapman, H.N., Nugent, K.A.: Coherent lensless x-ray imaging. Nat. Photonics. 4, 833–839 (2010)

    Article  ADS  Google Scholar 

  5. Sandberg, R.L., Song, C., Wachulak, P.W., Raymondson, D.A., et al.: High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution. Proc. Natl. Acad. Sci. USA. 105, 24–27 (2008)

    Article  ADS  Google Scholar 

  6. Gorniak, T., Heine, R., Mancuso, A.P., Staier, F., et al.: X-ray holographic microscopy with zone plates applied to biological samples in the water window using 3rd harmonic radiation from the free-electron laser FLASH. Opt. Express. 19, 11059–11070 (2011)

    Article  ADS  Google Scholar 

  7. Malm, E.B., Monserud, N.C., Brown, C.G., Wachulak, P.W., et al.: Tabletop single-shot extreme ultraviolet fourier transform holography of an extended object. Opt. Express. 21, 9959–9966 (2013)

    Article  ADS  Google Scholar 

  8. Sakdinawat, A., Attwood, D.: Nanoscale x-ray imaging. Nat. Photonics. 4, 840–848 (2010)

    Article  ADS  Google Scholar 

  9. Brizuela, F., Howlett, I.D., Carbajo, S., Peterson, D., et al.: Imaging at the nanoscale with practical table-top EUV laser-based full-field microscopes. IEEE J. Sel. Top. Quantum Electron. 18, 434–442 (2012)

    Article  Google Scholar 

  10. Brizuela, F., Wang, Y., Brewer, C.A., Pedaci, F., et al.: Microscopy of extreme ultraviolet lithography masks with 13.2 nm tabletop laser illumination. Opt. Lett. 34, 271–273 (2009)

    Article  ADS  Google Scholar 

  11. Tümmler, J., Jung, R., Stiel, H., Nickles, P.V., Sandner, W.: High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy. Opt. Lett. 34, 1378–1380 (2009)

    Article  ADS  Google Scholar 

  12. Tuemmler, J., Janulewicz, K.A., Priebe, G., Nickles P.V.: 10-Hz grazing incidence pumped Ni-like Mo x-ray laser. Phys. Rev. E. 72, 0374011–0374014 (2005)

    Google Scholar 

  13. Keenan, R., Dunn, H., Patel, P.K., Price, D.F., et al.: High-repetition-rate grazing-incidence pumped x-ray laser operating at 18.9 nm. Phys. Rev. Lett. 94, 1039011–1039014 (2005)

    Article  Google Scholar 

  14. Luther, B.M., Wang, Y., Larotonda, M.A., Alessi, D., et al.: Saturated high-repetition-rate 18.9-nm tabletop laser in nickellike molybdenum. Opt. Lett. 30, 165–167 (2005)

    Article  ADS  Google Scholar 

  15. Stiel, H., Tummler, J., Jung, R., Nickles, P.V., Sandner, W.: X-ray laser takes the 100 Hz barrier. SPIE. 7451, 7451091–7451098 (2009)

    ADS  Google Scholar 

Download references

Acknowledgement

Part of this work (LTXM) has been supported by BMBF program #13N8913. HS and KAJ gratefully acknowledge support by the german-korean collaboration program BMBF #KOR 10/016. HS, RJ, JT and CS gratefully acknowledge support by INREX (LaserLab Europe) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Stiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Stiel, H. et al. (2016). Nanoscale Imaging Using Coherent and Incoherent Laboratory Based Soft X-Ray Sources. In: Rocca, J., Menoni, C., Marconi, M. (eds) X-Ray Lasers 2014. Springer Proceedings in Physics, vol 169. Springer, Cham. https://doi.org/10.1007/978-3-319-19521-6_35

Download citation

Publish with us

Policies and ethics