Skip to main content

Progress and Prospects of a Compton X-ray Source Driven by a High-Power CO2 Laser

  • Conference paper
  • First Online:
X-Ray Lasers 2014

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 169))

  • 1130 Accesses

Abstract

X-ray sources based on inverse Compton scattering provide high peak-brightness combined with their well-controlled beam properties. We review recent progress in three research areas: Demonstrating the source’s spatial coherence, so leading to single-shot, ultra-fast, phase-contrast tomography; high-average-brightness intra-cavity Compton source; and, exploring the relativistic regimes of electron oscillation within the laser field that produces multiple Compton harmonics. Next-generation Compton sources most likely will utilize all-optical schemes in which lasers serving as a virtual wiggler simultaneously will drive an electron beam from a plasma-wakefield accelerator. We address the possibility of reaching full coherency of all-optical Compton sources, analogous to free-electron lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yakimenko, V., Pogorelsky, I.V.: Polarized γ source based on Compton backscattering in a laser cavity. Phys. Rev. ST Accel. Beams. 9, 091001 (2006)

    Google Scholar 

  2. Pogorelsky, I.V., et al.: Demonstration of 8×1018 photons/second peaked at 1.8 Å in a relativistic Thomson scattering experiment. Phys. Rev. ST Accel. Beams. 39, 090702 (2000)

    Google Scholar 

  3. Endrizzi, M. at al.: Quantitative phase retrieval with picosecond x-ray pulses from the ATF inverse Compton scattering source. Opt. Express. 19, 2748–2753 (2011)

    Article  ADS  Google Scholar 

  4. Sakaue, K., Endo, A., Washio, M.: Design of high brightness laser-Compton source for extreme ultraviolet and soft x-ray wavelengths. J. Micro/Nanolith. 11, 021124 (2012)

    Google Scholar 

  5. Graves, W.S., Broun, W., Kaertner, F.X., Moncton, D.E.: Intense super-radiant x-rays from a compact source using a nanocathode array and emittance exchange. Nucl. Instr. Meth. A. 608, S103 (2009)

    Google Scholar 

  6. Akagi, T., et al.: “Production of gamma rays by pulsed laser beam Compton scattering off GeV-electrons using a non-planar four-mirror optical cavity” J. Instrum. 7, P01021 (2012)

    Google Scholar 

  7. Pogorelsky, I.V., et al.: “High-brightness intra-cavity source of Compton radiation” J. Phys. B: At. Mol. Opt. Phys. 47, 234014 (2014)

    Google Scholar 

  8. Babzien, M., et al.: Harmonic in Thomson Scattering from Relativistic Electrons. PRL. 96, 054802 (2006)

    Google Scholar 

  9. Sakai, Y., et al.: Observation of redshifting and harmonic generation in inverse Compton scattering. Phys. Rev. ST Accel. Beams. 18, 060702 (2015)

    Google Scholar 

  10. Esarey, E., et al.: Nonlinear Thomson scattering of intense laser pulses from beams and plasmas. Phys. Rev. E. 48, 3003–3021 (1993)

    Google Scholar 

  11. Pogorelsky, I.V., Ben-Zvi, I.: Brookhaven National Laboratory’s ATF—Research Highlights and Plans, Plasma Phys. Contr. Fus. 58, 084017 (2014)

    Google Scholar 

  12. Esarey, E.: Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009)

    Google Scholar 

  13. Catravas, P., et al.: Femtosecond x-rays from Thomson scattering using laser wakefield accelerators. Meas. Sci. Technol. 12, 1828–1834 (2001)

    Google Scholar 

  14. Schlenvoigt, H.P., et al.: A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nature Phys. 4, 130–133 (2008)

    Google Scholar 

  15. Kneip, S., et al.: Bright spatially coherent synchrotron x-rays from a table-top source. Nature Phys. 6, 980–983 (2010)

    Google Scholar 

  16. Fourmaux, S., et al.: Single shot phase contrast imaging using laser-produced Betatron x-ray beams. Opt. Lett. 36, 2426–2428 (2011)

    Google Scholar 

  17. Corde, S., et al.: Femtosecond x-rays from laser-plasma accelerators. Rev. Mod. Phys. 85, 1–47 (2013)

    Google Scholar 

  18. Phuoc, K. Ta., et al: All-optical Compton gamma-ray source. Nat. Photon. 6, 308–311 (2012)

    Google Scholar 

  19. Hidding, B., et al.: Ultracold electron bunch generation via plasma photocathode emission and acceleration in a Beam-driven plasma blowout. PRL. 108, (2012)

    Google Scholar 

  20. Bacci, A., et al.: Compact x-ray free-electron laser based on an optical undulator. Nucl. Instrum. Meth. A. 587, 388–397 (2008)

    Google Scholar 

  21. Bacci, A., et al.: Transverse effects in the production of x-rays with a free-electron laser based on an optical undulator. Phys. Rev. ST Accel. Beams, 9, 060704, 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I.V. Pogorelsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Pogorelsky, I. (2016). Progress and Prospects of a Compton X-ray Source Driven by a High-Power CO2 Laser. In: Rocca, J., Menoni, C., Marconi, M. (eds) X-Ray Lasers 2014. Springer Proceedings in Physics, vol 169. Springer, Cham. https://doi.org/10.1007/978-3-319-19521-6_17

Download citation

Publish with us

Policies and ethics