Skip to main content

Abstract

We discuss some typical applications of Bayesian nonparametrics in biostatistics. The chosen applications highlight how Bayesian nonparametrics can contribute to addressing some fundamental questions that arise in biomedical research. In particular, we review some modern Bayesian semi- and nonparametric approaches for modeling longitudinal, survival, and medical diagnostic outcome data. Our discussion includes methods for longitudinal data analysis, non-proportional hazards survival analysis, joint modeling of longitudinal and survival data, longitudinal diagnostic test outcome data, and receiver operating characteristic curves. Throughout, we make comparisons among competing BNP models for the various data types considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also Müller and Mitra (2013) for a recent survey.

  2. 2.

    Zeger and Diggle (1994) used \(\rho (s) =\alpha +(1-\alpha )\rho ^{s}\). There are additional choices, including the possibility that σ w 2 could depend on t, resulting in a nonhomogeneous Ornstein–Uhlenbeck process (Zhang et al. 1998). Taylor et al. (1994) used an integrated Ornstein–Uhlenbeck process (integrating over an Ornstein–Uhlenbeck with exponential covariance function) that results in a covariance function that depends on both t and s. With structured covariance functions, the marginal covariance matrix for Y i is Cov\((Y _{i}) =\varSigma _{i}(\xi,\phi,\sigma ^{2}) = Z_{i}D(\xi )Z_{i}^{\mathrm{T}} + H_{i}(\phi ) +\sigma ^{2}I_{n_{ i}}\).

  3. 3.

    According to Ryan and Woodall (2005); Cox (1972) and Kaplan and Meier (1958) are the two most-cited statistical papers.

  4. 4.

    For ease of notation, we often write x β to denote of \(x^{\boldsymbol{T}}\beta\).

References

  • Aalen, O. (1980). A model for nonparametric regression analysis of counting processes. In: Mathematical Statistics and Probability Theory, Lecture Notes in Statistics, vol. 2, pp. 1–25. New York: Springer.

    Google Scholar 

  • Amewou-Atisso, M., Ghosal, S., Ghosh, J. K., and Ramamoorthi, R. (2003). Posterior consistency for semi-parametric regression problems. Bernoulli, 9, 291–312.

    Article  MathSciNet  MATH  Google Scholar 

  • Baron, A. T., Lafky, J. M., Boardman, C. H., Balasubramaniam, S., Suman, V. J., Podratz, K. C., and Maihle, N. J. (1999). Serum sErbB1 and epidermal growth factor levels as tumor biomarkers in women with stage III or IV epithelial ovarian cancer. Cancer Epidemiology Biomarkers and Prevention, 8, 129–137.

    Google Scholar 

  • Baron, A. T., Cora, E. M., Lafky, J. M., Boardman, C. H., Buenafe, M. C., Rademaker, A., Liu, D., Fishman, D. A., Podratz, K. C., and Maihle, N. J. (2003). Soluble epidermal growth factor receptor (sEGFR/sErbB1) as a potential risk, screening, and diagnostic serum biomarker of epithelial ovarian cancer. Cancer Epidemiology Biomarkers and Prevention, 12, 103–113.

    Google Scholar 

  • Barrientos, A. F., Jara, A., and Quintana, F. A. (2015). Bayesian density estimation for compositional data using random Bernstein polynomials. Journal of Statistical Planning and Inference (DOI: 10.1016/j.jspi.2015.01.006).

    Google Scholar 

  • Bedrick, E. J., Christensen, R., and Johnson, W. (1996). A new perspective on priors for generalized linear models. Journal of the American Statistical Association, 91, 1450–1460.

    Article  MathSciNet  MATH  Google Scholar 

  • Bedrick, E. J., Christensen, R., and Johnson, W. O. (2000). Bayesian accelerated failure time analysis with application to veterinary epidemiology. Statistics in Medicine, 19, 221–237.

    Article  Google Scholar 

  • Berger, J. O. and Guglielmi, A. (2001). Bayesian and conditional frequentist testing of a parametric model versus nonparametric alternatives. Journal of the American Statistical Association, 96, 174–184.

    Article  MathSciNet  MATH  Google Scholar 

  • Bigelow, J. L. and Dunson, D. B. (2009). Bayesian semiparametric joint models for functional predictors. Journal of the American Statistical Association, 104, 26–36.

    Article  MathSciNet  Google Scholar 

  • Branscum, A. J., Johnson, W. O., Hanson, T. E., and Gardner, I. A. (2008). Bayesian semiparametric ROC curve estimation and disease diagnosis. Statistics in Medicine, 27, 2474–2496.

    Article  MathSciNet  Google Scholar 

  • Branscum, A. J., Johnson, W. O., and Baron, A. T. (2013). Robust medical test evaluation using flexible Bayesian semiparametric regression models. Epidemiology Research International, ID 131232, 1–8.

    Google Scholar 

  • Branscum, A. J., Johnson, W. O., Hanson, T. E., and Baron, A. T. (2015). Flexible regression models for ROC and risk analysis with or without a gold standard. Submitted.

    Google Scholar 

  • Brown, E. R. and Ibrahim, J. G. (2003). A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. Biometrics, 59, 221–228.

    Article  MathSciNet  MATH  Google Scholar 

  • Carey, J. R., Liedo, P., Müller, H.-G., Wang, J.-L., and Chiou, J.-M. (1998). Relationship of age patterns of fecundity to mortality, longevity, and lifetime reproduction in a large cohort of mediterranean fruit fly females. The Journals of Gerontology, Ser. A: Biological Sciences and Medical Sciences, 53, 245–251.

    Google Scholar 

  • Chen, Y., Hanson, T., and Zhang, J. (2014). Accelerated hazards model based on parametric families generalized with Bernstein polynomials. Biometrics, 70, 192–201.

    Article  MathSciNet  Google Scholar 

  • Chiou, J.-M., Müller, H.-G., Wang, J.-L., and Carey, J. R. (2003). A functional multiplicative effects model for longitudinal data, with application to reproductive histories of female medflies. Statistica Sinica, 13, 1119–1133.

    MathSciNet  Google Scholar 

  • Christensen, R. and Johnson, W. (1988). Modelling accelerated failure time with a Dirichlet process. Biometrika, 75, 693–704.

    Article  MathSciNet  MATH  Google Scholar 

  • Christensen, R., Johnson, W., Branscum, A., and Hanson, T. E. (2010). Bayesian Ideas and Data Analysis. Boca Raton, FL: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, Ser. B, 34, 187–220.

    Google Scholar 

  • Cox, D. R. and Oakes, D. (1984). Analysis of Survival Data. Boca Raton, FL: Chapman & Hall/CRC.

    Google Scholar 

  • Crowley, J. and Hu, M. (1977). Covariance analysis of heart transplant survival data. Journal of the American Statistical Association, 72, 27–36.

    Article  Google Scholar 

  • Dahl, D. B. (2006). Model-based clustering for expression data via a Dirichlet process mixture model. In: Bayesian Inference for Gene Expression and Proteomics, Eds: Kim-Anh Do, Peter Müller & Marina Vannucci, New York: Springer, pp. 201–218.

    Google Scholar 

  • Daniels, M. J. and Linero, A. R. (2015). Bayesian nonparametrics for missing data in longitudinal clinical trials. In: Nonparametric Bayesian Methods in Biostatistics and Bioinformatics, Eds: R. Mitra & P. Müller, New York: Springer.

    Google Scholar 

  • De Iorio, M., Johnson, W. O., Müller, P., and Rosner, G. L. (2009). Bayesian nonparametric non-proportional hazards survival modelling. Biometrics, 65, 762–771.

    Google Scholar 

  • Dennerstein, L., Lehert, P., Burger, H., and Guthrie1, J. (2007). New findings from non-linear longitudinal modelling of menopausal hormone changes. Human Reproduction Update, 13, 551–557.

    Google Scholar 

  • Diggle, P. J. (1988). An approach to the analysis of repeated measurements. Biometrics, 44, 959–971.

    Article  MathSciNet  MATH  Google Scholar 

  • Dunson, D. B. (2010). Nonparametric Bayes applications to biostatistics. In: Bayesian Nonparametrics, Eds: N. L. Hjort et al., Cambridge UK: Cambridge University Press, pp. 223–273.

    Google Scholar 

  • Dunson, D. B. and Park, J.-H. (2008). Kernel stick-breaking processes. Biometrika, 95, 307–323.

    Article  MathSciNet  MATH  Google Scholar 

  • Escobar, M. D. (1994). Estimating normal means with a Dirichlet process prior. Journal of the American Statistical Association, 89, 268–277.

    Article  MathSciNet  MATH  Google Scholar 

  • Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90, 577–588.

    Article  MathSciNet  MATH  Google Scholar 

  • Faes, C., Molenberghs, G., Hens, N., Muller, A., Goossens, H., and Coenen, S. (2011). Analysing the composition of outpatient antibiotic use: A tutorial on compositional data analysis. Journal of Antimicrobial Chemotherapy, 66, 89–94.

    Article  Google Scholar 

  • Faucett, C. L. and Thomas, D. C. (1996). Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. Statistics in Medicine, 15, 1663–1685.

    Article  Google Scholar 

  • Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1, 209–230.

    Article  MathSciNet  Google Scholar 

  • Ferguson, T. S. (1974). Prior distribution on the spaces of probability measures. The Annals of Statistics, 2, 615–629.

    Article  MathSciNet  MATH  Google Scholar 

  • Gasparini, M. (1995). Exact multivariate Bayesian bootstrap distributions of moments. The Annals of Statistics, 23, 762–768.

    Article  MathSciNet  MATH  Google Scholar 

  • Geisser, S. and Eddy, W. F. (1979). A predictive approach to model selection. Journal of the American Statistical Association, 74, 153–160.

    Article  MathSciNet  Google Scholar 

  • Gelfand, A. E. and Dey, D. K. (1994). Bayesian model choice: Asymptotics and exact calculations. Journal of the Royal Statistical Society, Ser. B, 56, 501–514.

    Google Scholar 

  • Gelfand, A. E., Kottas, A., and MacEachern, S. N. (2005). Bayesian nonparametric spatial modeling with Dirichlet process mixing. Journal of the American Statistical Association, 100, 1021–1035.

    Article  MathSciNet  MATH  Google Scholar 

  • Glaser, N., Barnett, P., McCaslin, I., Nelson, D., Trainor, J., Louie, J., Kaufman, F., Quayle, K., Roback, M., Malley, R., et al. (2001). Risk factors for cerebral edema in children with diabetic ketoacidosis. The New England Journal of Medicine, 344, 264–269.

    Article  Google Scholar 

  • Hanson, T. and Johnson, W. O. (2002). Modeling regression error with a mixture of Polya trees. Journal of the American Statistical Association, 97, 1020–1033.

    Article  MathSciNet  MATH  Google Scholar 

  • Hanson, T. and Johnson, W. O. (2004). A Bayesian semiparametric AFT model for interval-censored data. Journal of Computational and Graphical Statistics, 13, 341–361.

    Article  MathSciNet  Google Scholar 

  • Hanson, T., Bedrick, E. J., Johnson, W. O., and Thurmond, M. C. (2003). A mixture model for bovine abortion and foetal survival. Statistics in Medicine, 22, 1725–1739.

    Article  Google Scholar 

  • Hanson, T., Sethuraman, J., and Xu, L. (2005). On choosing the centering distribution in Dirichlet process mixture models. Statistics & Probability Letters, 72, 153–162.

    Article  MathSciNet  MATH  Google Scholar 

  • Hanson, T., Johnson, W., and Laud, P. (2009). Semiparametric inference for survival models with step process covariates. Canadian Journal of Statistics, 37, 60–79.

    Article  MathSciNet  Google Scholar 

  • Hanson, T. E. (2006). Inference for mixtures of finite Polya tree models. Journal of the American Statistical Association, 101, 1548–1565.

    Article  MathSciNet  MATH  Google Scholar 

  • Hanson, T. E., Monteiro, J. V., and Jara, A. (2011a). The Polya tree sampler: Toward efficient and automatic independent Metropolis–Hastings proposals. Journal of Computational and Graphical Statistics, 20, 41–62.

    Article  MathSciNet  Google Scholar 

  • Hanson, T. E., Branscum, A. J., and Johnson, W. O. (2011b). Predictive comparison of joint longitudinal-survival modeling: A case study illustrating competing approaches (with discussion). Lifetime Data Analysis, 17, 3–28.

    Article  MathSciNet  Google Scholar 

  • Inácio de Carvalho, V., Jara, A., Hanson, T. E., and de Carvalho, M. (2013). Bayesian nonparametric ROC regression modeling. Bayesian Analysis, 8, 623–646.

    Article  MathSciNet  Google Scholar 

  • Inácio de Carvalho, V., Jara, A., and de Carvalho, M. (2015). Bayesian nonparametric approaches for ROC curve inference. In: Nonparametric Bayesian Methods in Biostatistics and Bioinformatics, Eds: R. Mitra & P. Müller, New York: Springer.

    Google Scholar 

  • Jara, A., Hanson, T. E., and Lesaffre, E. (2009). Robustifying generalized linear mixed models using a new class of mixtures of multivariate Polya trees. Journal of Computational and Graphical Statistics, 18, 838–860.

    Article  MathSciNet  Google Scholar 

  • Jara, A., Hanson, T., Quintana, F., Müller, P., and Rosner, G. L. (2011). DPpackage: Bayesian semi- and nonparametric modeling in R. Journal of Statistical Software, 40, 1–30.

    Google Scholar 

  • Jara, A., Nieto-Barajas, L., and Quintana, F. (2013). A time series model for responses on the unit interval. Bayesian Analysis, 8, 723–740.

    Article  MathSciNet  Google Scholar 

  • Johnson, W. and Christensen, R. (1986). Bayesian nonparametric survival analysis for grouped data. Canadian Journal of Statistics, 14, 307–314.

    Article  MathSciNet  Google Scholar 

  • Johnson, W. and Christensen, R. (1989). Nonparametric Bayesian analysis of the accelerated failure time model. Statistics & Probability Letters, 8, 179–184.

    Article  MathSciNet  MATH  Google Scholar 

  • Kalbfleisch, J. D. (1978). Non-parametric Bayesian analysis of survival time data. Journal of the Royal Statistical Society, Ser. B, 40, 214–221.

    Google Scholar 

  • Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data. New York: Wiley.

    Book  MATH  Google Scholar 

  • Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457–481.

    Article  MathSciNet  MATH  Google Scholar 

  • Kottas, A. and Gelfand, A. E. (2001). Bayesian semiparametric median regression modeling. Journal of the American Statistical Association, 96, 1458–1468.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuo, L. and Mallick, B. (1997). Bayesian semiparametric inference for the accelerated failure-time model. Canadian Journal of Statistics, 25, 457–472.

    Article  MATH  Google Scholar 

  • Lavine, M. (1992). Some aspects of Polya tree distributions for statistical modelling. The Annals of Statistics, 20, 1222–1235.

    Article  MathSciNet  MATH  Google Scholar 

  • Lavine, M. (1994). More aspects of Polya tree distributions for statistical modelling. The Annals of Statistics, 22, 1161–1176.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, D. and Ying, Z. (1995). Semiparametric inference for the accelerated life model with time-dependent covariates. Journal of Statistical Planning and Inference, 44, 47–63.

    Article  MathSciNet  MATH  Google Scholar 

  • Little, R. J., D’Agostino, R., Cohen, M. L., Dickersin, K., Emerson, S. S., Farrar, J. T., Frangakis, C., Hogan, J. W., Molenberghs, G., Murphy, S. A., et al. (2012). The prevention and treatment of missing data in clinical trials. The New England Journal of Medicine, 367, 1355–1360.

    Article  Google Scholar 

  • MacEachern, S. N. (2000). Dependent Dirichlet processes. Technical report, Department of Statistics, The Ohio State University.

    Google Scholar 

  • MacEachern, S. N. and Müller, P. (1998). Estimating mixture of Dirichlet process models. Journal of Computational and Graphical Statistics, 7, 223–238.

    Google Scholar 

  • Mauldin, R. D., Sudderth, W. D., and Williams, S. (1992). Polya trees and random distributions. The Annals of Statistics, 20, 1203–1221.

    Article  MathSciNet  MATH  Google Scholar 

  • Mitra, R. and Müller, P. (2015). Bayesian nonparametric models. In: Nonparametric Bayesian Methods in Biostatistics and Bioinformatics, Eds: R. Mitra & P. Müller, New York: Springer.

    Google Scholar 

  • Müller, P. and Mitra, R. (2013). Bayesian nonparametric inference—Why and how (with discussion). Bayesian Analysis, 8, 269–302.

    Article  MathSciNet  Google Scholar 

  • Neal, R. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9, 249–265.

    MathSciNet  Google Scholar 

  • Nieto-Barajas, L. E., Müller, P., Ji, Y., Lu, Y., and Mills, G. B. (2012). A time-series DDP for functional proteomics profiles. Biometrics, 68, 859–868.

    Article  MathSciNet  MATH  Google Scholar 

  • Nieto-Barajas, L. E., Contreras-Cristán, A., et al. (2014). A Bayesian nonparametric approach for time series clustering. Bayesian Analysis, 9, 147–170.

    Article  MathSciNet  Google Scholar 

  • Norris, M., Johnson, W. O., and Gardner, I. A. (2009). Modeling bivariate longitudinal diagnostic outcome data in the absence of a gold standard. Statistics and its Interface, 2, 171–185.

    Article  MathSciNet  MATH  Google Scholar 

  • Norris, M., Johnson, W. O., and Gardner, I. A. (2014). Bayesian semi-parametric joint modeling of biomarker data with a latent changepoint: Assessing the temporal performance of Enzyme-Linked Immunosorbent Assay (ELISA) testing for paratuberculosis. Statistics and its Interface, 7, 417–438.

    Article  MathSciNet  Google Scholar 

  • Paddock, S. M. (2002). Bayesian nonparametric multiple imputation of partially observed data with ignorable nonresponse. Biometrika, 89, 529–538.

    Article  MathSciNet  MATH  Google Scholar 

  • Pepe, M. S. (2003). The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford, UK: Oxford University Press.

    MATH  Google Scholar 

  • Petrone, S. (1999). Random Bernstein polynomials. Scandinavian Journal of Statistics, 26, 373–393.

    Article  MathSciNet  Google Scholar 

  • Prentice, R. (1982). Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika, 69, 331–342.

    Article  MathSciNet  MATH  Google Scholar 

  • Prentice, R. L. and Kalbfleisch, J. D. (1979). Hazard rate models with covariates. Biometrics, pages 25–39.

    Google Scholar 

  • Quintana, F., Johnson, W. O., Waetjen, E., and Gold, E. (2015). Bayesian nonparametric longitudinal data analysis. Submitted.

    Google Scholar 

  • Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Ricketts, J. and Head, G. (1999). A five-parameter logistic equation for investigating asymmetry of curvature in baroreflex studies. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 277, R441–R454.

    Google Scholar 

  • Rodriguez, A., Dunson, D. B., and Gelfand, A. E. (2008). The nested Dirichlet process (with discussion). Journal of the American Statistical Association, 103, 1131–1154.

    Article  MathSciNet  MATH  Google Scholar 

  • Ryan, T. P. and Woodall, W. H. (2005). The most-cited statistical papers. Journal of Applied Statistics, 32, 461–474.

    Article  MathSciNet  MATH  Google Scholar 

  • Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 2, 639–650.

    MathSciNet  MATH  Google Scholar 

  • Sundaram, R. (2006). Semiparametric inference for the proportional odds model with time-dependent covariates. Journal of Statistical Planning and Inference, 136, 320–334.

    Article  MathSciNet  Google Scholar 

  • Susarla, V. and Van Ryzin, J. (1976). Nonparametric Bayesian estimation of survival curves from incomplete observations. Journal of the American Statistical Association, 71, 897–902.

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor, J., Cumberland, W., and Sy, J. (1994). A stochastic model for analysis of longitudinal AIDS data. Journal of the American Statistical Association, 89, 727–736.

    Article  Google Scholar 

  • Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006). Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101, 1566–1581.

    Article  MathSciNet  MATH  Google Scholar 

  • Tokdar, S. T. (2006). Posterior consistency of Dirichlet location-scale mixture of normals in density estimation and regression. Sankhyā: The Indian Journal of Statistics, 68, 90–110.

    MathSciNet  MATH  Google Scholar 

  • Tomlinson, G. and Escobar, M. (1999). Analysis of densities. Technical report, University of Toronto.

    Google Scholar 

  • Tseng, Y.-K., Hsieh, F., and Wang, J.-L. (2005). Joint modelling of accelerated failure time and longitudinal data. Biometrika, 92, 587–603.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsiatis, A. A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: An overview. Statistica Sinica, 14, 809–834.

    MathSciNet  MATH  Google Scholar 

  • Wald, A. (1952). On the principles of statistical inference. Notre Dame Mathematical Lectures, No. 1, Notre Dame, Ind.

    Google Scholar 

  • Wang, Y. and Taylor, J. M. G. (2001). Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. Journal of the American Statistical Association, 96, 895–905.

    Article  MathSciNet  MATH  Google Scholar 

  • Zeger, S. L. and Diggle, P. J. (1994). Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. Biometrics, 50, 689–699.

    Article  MATH  Google Scholar 

  • Zhang, D., Lin, X., Raz, J., and Sowers, M. (1998). Semiparametric stochastic mixed models for longitudinal data. Journal of the American Statistical Association, 93, 710–719.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, H. and Hanson, T. (2015). Bayesian spatial survival models. In: Nonparametric Bayesian Methods in Biostatistics and Bioinformatics, Eds: R. Mitra & P. Müller, New York: Springer.

    Google Scholar 

Download references

Acknowledgements

We thank the Editors for the invitation, and we are indebted to our ‘partners in crime,’ including Adam Branscum, Ron Christensen, Ian Gardner, Maria De Iorio, Alejandro Jara, Prakash Laud, Michelle Norris, Fernando Quintana, Gary Rosner, and Mark Thurmond. Special thanks go to Vanda Inácio de Carvalho, Tim Hanson, and Peter Müller, who made substantive contributions to the penultimate draft of this paper, in addition to their contributions to the work presented. M. de. C was supported by Fondecyt grant 11121186.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley O. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johnson, W.O., de Carvalho, M. (2015). Bayesian Nonparametric Biostatistics. In: Mitra, R., Müller, P. (eds) Nonparametric Bayesian Inference in Biostatistics. Frontiers in Probability and the Statistical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-19518-6_2

Download citation

Publish with us

Policies and ethics